The items occurring in this list mainly concern the primary
literature on paradoxes in the period 1897–1945.
- Behmann., H. 1931,
“Zu den Widersprüchen der Logik und der Mengenlehre”,
Jahresbericht der Deutschen Mathematiker-Vereinigung,
40: 37–48, 1931.
- Bernstein, F. 1905a,
“Die Theorie der reellen Zahlen”, Jahresbericht der
Deutschen Mathematiker-Vereinigung, 14: 447–449.
- –––, 1905b. “Über die Reihe der
transfiniten Ordnungszahlen”, Mathematische Annalen,
60: 187–193.
- –––, 1905c, “Zum Kontinuumproblem”,
Mathematische Annalen, 60: 463–464.
- Bochvar, D. A., 1937,
“On a three-valued logical calculus and its applications to
the analysis of the paradoxes of the classical extended functional
calculus”, in: History and Philosophy of Logic,
vol.2, pp. 87–112, 1981 (English translation by M. Bergmann of
the Russian original, in: Mathematicheski Sbornik, 4 (46):
287–308);
- Borel, E., Baire, R.,
Hadamard, J., Lebesgue, H., 1905, “Cinq lettres sur la
théorie des ensembles”, Bulletin de la
Société Mathématique de
France, 33: 261–273.
- Borel, E., 1908,
“Les paradoxes de la théorie des ensembles”,
Annales scientifique de l'École Normale
Supérieure, 25: 443–448 (reprinted
in: E. Borel, Leçons sur la théorie des
functions, Paris: Gauthier Villars, 2nd edition,
1914, 162–166).
- Brouwer, L.E.J. 1907,
“Over die Grondslagen der Wiskunde”. Dissertation,
Amsterdam (English translation in: L.E.J.Brouwer, Collected Works
I, Amsterdam: North Holland 1975).
- Burali-Forti C., 1897,
“Una questione sui numeri transfiniti”. Rendiconti del
Circolo Matematico di Palermo, 11: 260, 154–164 (English
translation in van Heijenoort 1967, 104–111).
- Cantor, G. 1962,
Gesammelte Abhandlungen mathematischen und philosophischen
Inhalts. (ed. E. Zermelo), Berlin–Hildesheim, Olms.
- Cantor, G. 1991,
Briefe, Berlin–Hildesheim, Olms (eds. H. Meschkowski and
W. Nilson).
- Carnap, R., 1934a,
“Die Antinomien und die Unvollständigkeit der
Mathematik”, Monatshefte für Mathematik und Physik,
41: 263–284.
- –––, 1934b,
Die logische Syntax der Sprache, Berlin: Springer.
- Church, A., 1932,
“A set of postulates for the foundation of logic”
(1st paper), Annals of Mathematics, 33:
346–366.
- –––, 1933,
“A set of postulates for the foundation of logic”
(2nd paper), Annals of Mathematics, 34:
839–864.
- –––, 1934, “The Richard paradox”,
American Mathematical Monthly, 41: 356–361
- Chwistek, L.1921,
“Antinomje logiki formalnej. Przegląd
Filozoficzny”, 24: 164–171, (English translation
by Z. Jordan: “Antinomies of formal logic”, in: S.
McCall, Polish Logic 1920–1939, Clarendon Press, Oxford, 1967,
338–345).
- –––, 1922,
“Über die Antinomien der Prinzipien der
Mathematik”. Mathematische Zeitschrift,
14: 236–243.
- –––, 1933,
“Die nominalistische Grundlegung der Mathematik”.
Erkenntnis, 3: 367–388.
- Curry, H.B. 1930,
“Grundlagen der kombinatorischen Logik”. American
Journal of Mathematics, 52: 509–536, 739–834.
- –––,
1941, “The paradox of Kleene and Rosser”. Transactions
of the American Mathematical Society, 41: 454–516.
- –––, 1942, “The inconsistency of certain
formal logics”, Journal of Symbolic Logic, 7:
115–117.
- Finsler, P., 1925,
“Gibt es Widersprüche in der Mathematik?”,
Jahresbericht der Deutschen Mathematiker-Vereinigung,
34: 143–155.
- –––,
1926a, “Formale Beweise und die Unentscheidbarkeit”.
Mathematische Zeitschrift, 25: 676–682.
- –––,
1926b, “Über die Grundlagen der Mengenlehre”.
Mathematische Zeitschrift, 25: 683–713.
- Fitch, F.B., 1936,
“A system of formal logic without an analogue to Curry
W-operator”, Journal of Symbolic Logic,
1: 92–100..
- –––,
1942, “A basic logic”, Journal of Symbolic Logic,
7: 105–114.
- Frege, G. 1903,
Grundgesetze der Arithmetik. Begriffschriftlich Abgeleitet.
Vol.II, Jena, (reprinted, Hildesheim: Olms, 1962).
- –––,
1976, Wissenschaftslicher Briefswechsel, Hamburg, F.
Meiner.
- –––,
1984, Nachgelassene Schriften, Hamburg, F. Meiner.
- Gödel, K., 1931,
“Über formal unentscheidbare Sätze der Principia
Mathematica und verwandter Systeme I ”, Monatshefte für
Mathematik und Physik, 38: 173–198.
- Grelling, K. and
Nelson, L., 1908, “Bemerkungen zu den Paradoxien von Russell und
Burali-Forti ”, Abhandlungen der Fries'chen Schule,
2: 301–334.
- Hessenberg, G., 1906,
Grundbegriffe der Mengenlehre, Göttingen:Vandenhoek und
Ruprecht (also in: Abhandlungen der Fries'chen Schule, Neue
Reihe, 1: 479–706, 1906).
- Hilbert, D. and W.
Ackermann, 1928, Grundzüge der theoretischen Logik,
Berlin-Heidelberg: Springer.
- Hilbert, D., 1904,
“Über die Grundlagen der Logik und der Arithmetik”,
Verhandlungen des Dritten Internationalen-Mathematiker
Kongresses, Leipzig:Teubner, 174–185 (English transl.
in van Heijenoort 1967, 129–138).
- Hilbert, D., 1918,
Prinzipien der Mathematik. Vorlesung von D. Hilbert,
Mathematisches Institut der Georg-August Universität
Göttingen..
- Kleene, S. C. and J. B.
Rosser, 1935, “The inconsistency of certain formal logics”,
Annals of Mathematics, 36: 630–637
- König, J., 1905,
“Über die Grundlagen der Mengenlehre und das
Kontinuumsproblem”, Mathematische Annalen,
61: 156–160.
- Levi, B., 1902,
“Intorno alla teoria degli aggregati”, Reale Istituto
Lombardo di Scienze e Lettere, Rendiconti, 2nd Series,
35: 863–868
- Levi, B., 1908,
“Antinomie logiche?”, Annali di Matematica
(terza serie), tomo 15: 188–216.
- Lewis, C. I. and
C.H. Langford, 1932, Symbolic Logic, The Century Co., New
York, (Reprinted Dover, New York, 1952).
- Mirimanoff, D., 1917a,
“Les antinomies de Russell et de Burali-Forti et le
problème fondamentale de la théorie des ensembles”,
L'Enseignement Mathématique, 19: 37–52.
- –––,
1917b, “Remarques sur la théorie des ensembles et les
antinomies cantoriennes I ”, L'Enseignement
Mathématique, 19: 209–217.
- –––, 1920, “Remarques sur la théorie des
ensembles et les antinomies cantoriennes II ”, L'Enseignement
Mathématique, 21: 29–52.
- Peano, G., 1906,
Additione, Revista de Matematica, 8:143–157, 1902–1906,
in: G. Peano, Opere Scelte, vol.I , Roma:Cremonese, 1957,
344–358.
- Poincaré, H.,
1905, “Les mathématiques et la logique”, Revue
de Métaphysique et de Morale, 13: 815–835.
- –––,
1906a, “Les mathématiques et la logique”, Revue
de Métaphysique et de Morale, 14: 17–34
- –––, 1906b, “Les mathématiques et
la logique”, Revue de Métaphysique et de Morale,
14: 294–317.
- –––, 1909a, “La logique de
l'infini”, Revue de Métaphysique et de Morale,
7: 461–482
- –––,
1909b, “Réflexions sur les deux notes precedents”, Acta
Mathematica, 32: 195–200.
- –––,
1910, “Über transfiniten Zahlen”, in Sechs
Vorträge über ausgewählte Gegenstände der reinen
Mathematik und Physik, Leipzig-Berlin, 43–48.
- –––,
1912, “La logique de l'infini”, Scientia,
12: 1–11.
- Quine, W. O., 1937,
“New foundations for mathematical logic”, American
Mathematical Monthly, 44: 70–80
- Ramsey, F. P., 1926,
“The foundations of mathematics”, Proceedings of the
London Mathematical Society (Series 2), 25:
338–384.
- –––, 1931, The Foundations of Mathematics and
Other Logical Essays, London: Routledge and Kegan Paul.
- Richard, J, 1905,
“Les principes des mathématique et le problème des
ensembles”, Revue Générale des Sciences Pures
et Appliquées, 16:541 (also in: Acta Mathematica,
30: 295–296, 1906; English transl. in van Heijenoort 1967,
142–144).
- Rosser, J. B., 1939,
“An informal exposition of proofs of Gödel's and
Church's theorem”, Journal of Symbolic Logic,
4: 53–60.
- Russell, B., 1903,
The Principles of Mathematics, vol. 1, Cambridge: Cambridge
University Press.
- –––,
1907, “On some difficulties in the theory of transfinite numbers
and order types”, Proceedings of the London
Mathematical Society (2nd series), 4: 29–53
- –––,
1906, “Les paradoxes de la logique”, Revue de
Métaphysique et de Morale, 14: 627–650
- –––, 1908, “Mathematical Logic as Based on
the Theory of Types”, American Journal of Mathematics, 30:
222–262. Reprinted in Russell, B., Logic and Knowledge, London:
Allen and Unwin, 1956, 59–102, and in van Heijenoort 1967,
152–182.
- Schönflies, A.,
1906, “Über die logischen Paradoxien der Mengenlehre”,
Jahresbericht der Deutschen Mathematiker-Vereinigung,
15: 19–25.
- Tarski, A., 1931,
“Sur les ensembles définissables de nombres réels
I”, Fundamenta Mathematicae, 17:
210–239.
- –––,
1933, “The concept of truth in the languages of the deductive
sciences” (Polish), Prace Towarzystwa Naukowego
Warszawskiego, Wydzial III Nauk Matematyczno-Fizyczych
34, Warsaw; reprinted in Zygmunt, J. ed. 1995, Alfred
Tarski, Pisma Logiczno-Filozoficzne, 1 Prawda, Warsaw :
Wydawnictwo Naukowe PWN, 13–172.
- –––,
1935, “Der Wahrheitsbegriff in der formalisierten
Sprachen”, Studia Philosophica, 1: 261–405
(extended German translation of Tarski 1933; English translation in
A. Tarski, Logic, Semantics, Metamathematics, 2d ed.,
Indianapolis: Hackett 1983, 152–278)
- van Heijenoort, 1967,
From Frege to Gödel. A source book in mathematical logic
1879–1931, Cambridge, Mass., Harvard University Press.
- von Neumann, J., 1925,
“Eine Axiomatisierung der Mengenlehre”, Journal
für die reine und angewandte Mathematik,
154: 219–240 (Corrections in vol.155, 1926, p. 128).
- Weyl, H., 1910,
“Über die Definitionen der mathematischen
Grundbegriffe”, Mathematisch-naturwissenschaftliche
Blätter, 7: 93–95; 109–113.
- –––,
1918, Das Kontinuum, Leipzig: Veit (English
Translation, New York: Dover 1994).
- Whitehead, A. N. and B.
Russell (1910, 1912, 1913) Principia Mathematica, 3 vols, Cambridge:
Cambridge University Press. Second edition, 1925 (Vol. 1), 1927 (Vols
2, 3).
- –––, 1911, “Über die Stellung der
Definition in der Axiomatik”, Jahresbericht der Deutschen
Mathematiker-Vereinigung, 20: 222–255.
- Zermelo, E., 1908,
“Untersuchungen über die Grundlagen der Mengenlehre
I”, Mathematische Annalen, 65: 261–281.
- Zygmunt, J. (Editor).
1995, Alfred Tarski, Pisma Logiczno-Filozoficzne, 1 Prawda,
Warsaw : Wydawnictwo Naukowe PWN.
This list contains (i) items cited in the final section; (ii) items
related to developments of paradoxes after the Second World War; (iii)
critical historical papers.
- Aczel, P., 1980,
“Frege structures and the notion of proposition, truth and
set”, The Kleene Symposium, Jon Barwise et al.
(editors), Amsterdam: North-Holland, 31–59.
- –––,
1988, “Non-Well-Founded Sets”, Stanford: CSLI, 1988.
- Anderson, C.A. and Zelëny, M. (editors),
2001, Logic, Meaning and Computation, Dordrecht: Kluwer.
- Barendregt, H., 1984,
The Lambda Calculus. Its Syntax and Semantics, Studies in
Logic and the Foundations of Mathematics, vol. 103, Amsterdam:
Elsevier.
- Barwise, J. and
Etchemendy, J., 1984. The Liar, New York: Oxford University
Press.
- Barwise J. and L. Moss,
1996, Vicious Circles. On the Mathematics of Non-Wellfounded
Phenomena, Stanford: CSLI, 1996.
- Beall, J.C. (editor), 2003, Liars and Heaps, Oxford:
Clarendon Press.
- –––, 2007, Revenge of the Liar. New Essays
on the Paradox, New York: Oxford University Press.
- Bernardi, C. 2001,
Fixed points and unfounded chains, Annals of Pure and Applied
Logic, 109: 163–178.
- Betti, A., 2004,
“Lesniewski's early Liar, Tarski and natural
language”, Annals of pure and applied logic, 127:
267–287
- Birkhoff, G., 1967,
Lattice Theory, Providence, RI: American Mathematical Society,
3rd edition.
- Boolos G. 1989,
“A new proof of the Gödel incompleteness theorem”,
Notices of the American Mathematical Society,
36: 388–390
- –––, 1993, The logic of provability,
Cambridge: Cambridge University Press.
- Bruni, R., 2009 “A note on theories for quasi-inductive
definitions”, Review of Symbolic Logic,
2: 684–699
- Burgess, A.G. and Burgess, J.P. 2011,
Truth, Princeton: Princeton University Press.
- Burgess, J. 2005,
Fixing Frege, Princeton: Princeton University Press.
- Cantini A. and P.
Minari, 1999, Uniform inseparability in explicit mathematics, The
Journal of Symbolic Logic, 64: 313–326.
- Cantini, A., 2003,
“The undecidability of Grišin's set theory”,
Studia Logica, 74: 345–368.
- –––,
2004, “On a Russellian paradox about propositions and
truth”, in: G. Link 2004, 259–284.
- Chaitin, G., 1995,
“The Berry paradox”, Complexity,
1: 26–30.
- Church, A.,
1976,“A Comparison of Russell's Resolution of the
Semantical Antinomies with that of Tarski ”, Journal of
Symbolic Logic, 41: 747–760.
- Coquand, T., 1986, “An analysis of Girard's
paradox,” Proceedings of the IEEE Symposium on Logic in
Computer Science, pp. 227–236.
- –––,
1994, “A new paradox in type theory,” in D.Prawitz,
B.Skyrms, D.Westerstahl (Editors), Logic, Methodology and
Philosophy of Science IX, Studies in Logic and the Foundations of
Mathematics, vol. 134, Amsterdam: North-Holland, 555–570.
- Feferman, S., 1964,
“Systems of predicative analysis I ”, Journal of
Symbolic Logic, 29: 1–30.
- –––,
1979, “Constructive theories of functions and classes”, in
M.Boffa and D.van Dalen (Editors), Logic Colloquium ‘78,
Amsterdam: North Holland, 159–224.
- –––,
1984,“Towards Useful Type-free Theories. I.” Journal of
Symbolic Logic, 49: 75–111.
- –––,
1991,“Reflecting on Incompleteness”, Journal of
Symbolic Logic, 56: 1–49.
- –––, 2008,“Axioms for Determinatess and
Truth”, Review of Symbolic Logic
, 1: 204–217.
- Field, H., 2003,
“A revenge-immune solution to the semantic paradoxes.”,
Journal of Philosophical Logic, 32: 139–177.
- –––, 2008,
Saving Truth from Paradox , New York: Oxford University
Press.
- Flagg, R. and J.
Myhill, 1987, “Implications and analysis in classical Frege
structures”. Annals of Pure and Applied Logic,
34: 33–85.
- Forti, M. and F.
Honsell, 1983, “Set theory with free construction
principles”, Annali della Scuola Normale Superiore di
Pisa, Classe di Scienze, Serie IV, 10: 493–522.
- Forti, M. and R.
Hinnion, 1989, “The consistency problem for positive
comprehension principles”, Journal of Symbolic Logic,
54: 1401–1418.
- Friedman, H. and M.
Sheard, 1987, “An Axiomatic Approach to Self-Referential
Truth”, Annals of Pure and Applied Logic
33: 1–21.
- Fujimoto, K, 2010, “Relative truth and definability of
axiomatic truth theories”, Bull. Symbolic Logic 16:
33: 305–344.
- Gaifman, H., 1988.
“Operational pointer semantics: Solution to self-referential
puzzles I ”, in Vardi, M. (Editors), Proceedings of the
Second Conference on Theoretical Aspects of Reasoning about
Knowledge, San Francisco: Morgan Kaufmann, 43–59.
- Garciadiego, A., 1992,
Bertrand Russell and the Origins of Set-theoretic
“Paradoxes”, Basel: Birkhäuser.
- Geach, P., 1955,
“On Insolubilia”, Analysis, 15:71–72.
- Girard, J. Y., 1998,
“Light linear logic”, Information and Computation,
143: 175–204.
- Grišin, V. N.,
1981, “Predicate and set theoretic calculi based on logic without
contraction rules” (Russian). Izvestiya Akademii Nauk
SSSR Seriya Matematicheskaya,
45(1): 47–68, (English translation in: Math. USSR
Izv., 1982, 18(1): 41–59).
- Grue, K., 2001,“ Lambda calculus as a foundation of
mathematics,”, in: Anderson, C.A. and Zelëny, M. (editors),
287 –311.
- Gupta, A. and N.
Belnap, 1993, The Revision Theory of Truth, Cambridge, MA: MIT
Press.
- Hajek,P., 2005
,“On the arithmetic in the Cantor-Łukasiewicz set
theory”, Archive for Mathematical Logic, 44:
763–782
- Hajek, P., Paris, J.
and Shepherdson, J., 2000 ,“The liar paradox and fuzzy
logic”, Journal of Symbolic Logic, 65: 339–346
- Halbach, V., 2011,
Axiomatic Theories of Truth,
Cambridge: Cambridge University Press.
- Halbach, V., Leitgeb,
H. and P.Welch 2003, “Possible world semantics for modal
notions conceived as predicates”, Journal of Philosophical
Logic, 32: 179–223.
- Halbach, V. and Welch, P., 2009, “Necessities and necessary
truths: a prolegomenon to the use of modal notions in the analysis of
the intensional notions”, Mind, 118: 71–100.
- Hinnion, R. and Libert, t., 2003, “Positive abstraction and
extensionality ”, Journal of Symbolic Logic ,
68: 828–836.
- Holmes, M.R., 2001,“Tarski's Theorem and NFU, ”in:
Anderson et al. 2001, pp. 469–478.
- Horsten,L., 2011,
The Tarskian Turn. Deflationism and Axiomatic Truth,
Cambridge, Massachusetts: The MIT.
- Irvine, A., 2009, “Bertrand Russell's Logic,
”in: Handbook of the History of Logic, volume 5, Logic from
Russsell to Church, Dov M.Gabbay and John Wood (editors),
Amsterdam: Elsevier and North-Holland, 1–28.
- Jäger, G., 1997,
“Power types in explicit mathematics”, Journal of
Symbolic Logic, 62: 1142–1146.
- Kahle, R., 2004, “David Hilbert über Paradoxien”,
Preprint Number 06-17, Departamento de Matemática, Universidade
de Coimbra, 2006, 1–42.
- Kahle, R. and V. Peckhaus, 2002, “Hilbert's
paradox”, Historia Mathematica, 29: 127–155.
- Kaplan, D. and R.
Montague, 1960, “A paradox regained”, Notre Dame
Journal of Formal Logic, 1: 79–90.
- Kikuchi, M., 1994, “ A note on Boolos' proof of the
incompleteness theorem,”, Math. Logic Quart. , 40:
528–532.
- Kreisel, G. 1960,
“La prédicativité”, Bulletin de la
Société Mathématique de France,
88: 371–391.
- Kripke, S., 1975,
“Outline of a Theory of Truth”, Journal of
Philosophy, 72: 690–716.
- Kritchman, S. and Raz, R., 2011, “ The surprise examination
paradox and the second incompleteness theorem”, Notices of
the American Mathematical Society, 57: 1454–1458.
- Lawvere, F. W., 1969,
“Diagonal arguments and Cartesian closed categories”, in P.
Hilton (editor), Category Theory, Homology Theory and their
Applications, II, vol. 92, Lecture Notes in
Mathematics, 134–145, Berlin-Heidelberg,
Springer.
- Leigh, G. and Rathjen,M., 2010, “An ordinal analysis for
theories of self-referential truth”, Archive for
Mathematical Logic 49: 213–247.
- Leitgeb, H., 2007, “
What theories of truth should be like (but cannot be)”,
Blackwell Philosophy Compass, 2: 276–290.
- –––, 2008, “
On the probabilistic convention T”,
The Review of Symbolic Logic, 1: 218–224.
- Libert, T. and Esser, O., 2005, “On topological set
theory”, Mathematical Logic Quarterly, 51: 263–273.
- Link, G. (ed.), 2004, One Hundred Years of Russell's
Paradox, Berlin: De Gruyter.
- Linsky, B., 2004,
“Leon Chwistek on the no-classes theory”, History and
Philosophy of Logic, 25: 53–71.
- Löb, M. H., 1955,
“Solution of a problem of Leon Henkin”, The Journal of
Symbolic Logic, 20: 115–118.
- Malitz, R.J., 1976, Set Theory in which the axiom of
foundation fails, Ph.D. thesis, Philosophy Department, University
of California, Los Angeles.
- Mancosu, P., 2003,
“The Russellian Influence on Hilbert and his School”,
Synthèse, 137: 59–101.
- Mancosu, P., Zach, R.,
Badesa, C., 2004, “The Development of Mathematical Logic
from Russell to Tarski: 1900–1935”, in, L. Haaparanta, ed.,
The History of Modern Logic, Oxford: Oxford University Press,
to appear, pp. 1–187.
- Martin, R. L., 1984,
Recent Essays on Truth and the Liar Paradox, Oxford:
Oxford University Press, 1984.
- Martin-Löf, P., 1971, A Theory of Types,
(preprint), Stockholm University.
- –––,
1998, “An intuitionistic theory of types,” in
:Twenty-five years of constructive type theory, Oxford, Oxford
University Press, 127–172.
- Martino, E., 2001,“, Russellian type theories and semantical
paradoxes,” in: Anderson et al. 2001, pp. 491 –506.
- McGee, V., 1991,
Truth, Vagueness, and Paradox: An Essay on the Logic of Truth,
Indianapolis and Cambridge: Hackett Publishing.
- Moh Shaw-Kwei, 1954, “Logical Paradoxes for Many-Valued
Systems”. Journal of Symbolic Logic, 19:
37–39.
- Montague, R., 1963,
“Syntactical treatment of modality, with corollaries on
reflection principles and finite axiomatizability”, Acta
Philosophica Fennica, 16: 153–167
- Moore, G. H., 1995,
“The origin of Russell's paradox: Russell, Couturat and the
antinomy of infinite number”, in J. Hintikka,
From Dedekind to Gödel. Essays on the development of the
foundation of mathematics, Dordrecht: Kluwer,
215–239.
- Moore, G. H. and
Garciadiego, A., 1981, “Burali-Forti's paradox: a
reappraisal of its origins”, Historia Mathematica,
8: 319–350.
- Myhill, J., 1950,
“A system which can define its own truth”, Fundamenta
Mathematicae, 37: 190–92.
- Pelham, J. and
A.Urquhart, 1994, “Russellian propositions”, in:
D.Prawitz, B.Skyrms, and D.Westerstahl (editors), Logic,
Methodology and Philosophy of Science IX, 307–326,
Amsterdam, Elsevier.
- Reinhardt, W. N., 1986,
“Some Remarks on Extending and Interpreting Theories with a
Partial Predicate for Truth”, Journal of Philosophical
Logic, 15: 219–51.
- Schütte, K., 1960,
Beweistheorie, Springer, Berlin-Heidelberg,
- Scott, D., 1975,
“Combinators and classes”, λ-calculus and
computer science, C. Böhm (ed.), Lecture Notes in Computer
Science, Berlin: Springer, 1–26.
- –––, 1972, “Continuous lattices”, in:
W.Lawvere, ed., Toposes, Algebraic Geometry and Logic,
Berlin-Heidelberg, vol.274, Springer Lecture Notes in
Mathematics, 97–136.
- Sheard, M., 1994,
“A Guide to truth Predicates in the Modern Era”,
Journal of Symbolic Logic, 59: 1032–54.
- Shen-Yuting, 1953,
“The paradox of the class of all grounded sets”, The
Journal of Symbolic Logic, 18: 114.
- Simmons, K., 1993.
Universality and the Liar, New York: Cambridge University
Press.
- Specker, E., 1962, “Typical ambiguity”, in E. Nagel,
P.Suppes, and A.Tarski, eds., Logic, Methodology and Philosophy of
Science, pp. 116–123, Stanford: Stanford University
Press.
- Terui, K., 2004,
“Light Affine Set Theory: a naïve set theory of polynomial
time”, Studia Logica, 77: 9–40.
- Thomason, R., 1980,
“A note of syntactical treatments of modality”,
Synthèse, 44: 391–395.
- Visser, A., 1989,
“Semantics and the liar paradox,” Handbook of
Philosophical Logic, vol. IV, Dordrecht: Kluwer, 617–706.
- Welch, P., 2001,
“On Gupta-Belnap revision theories of truth, Kripkean fixed
points and the next stable”, The Bulletin of Symbolic
Logic, 7: 345–360.
- –––, 2008, “Ultimate
truth vis-a-vis, Stable Truth ”, The Review of
Symbolic Logic, 1: 126–142.
- –––, 2009, “Games for truth”,
Bulletin of Symbolic Logic, 15:410–427.
- Weydert, E., 1988, How to approximate the naive comprehension
scheme inside classical logic, Dissertation, Rheinische
Friedrich-Wilhelms-Universität, Bonn, 1988; published in Bonner
Mathematische Schriften, 194. Universität Bonn, Mathematisches
Institut, Bonn, 1989.
- Wolenski, J., 1995,
“On Tarski's background”, In Hintikka, J. (Editors.),
From Dedekind to Gödel, Essays on the
development of the foundation of mathematics,
Dordrecht: Kluwer, 331–341.
- Yablo, Stephen, 1993, “Paradox without
self-reference,” Analysis, 53: 251–252.