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A Many-Sorted Approach to Predicative Mathematics

Julian I,. Hook
Abstract

We investigate calculus and set theory in a predicative theory
whose consistency can be proved finitarily. Real numbers are intro-
duced as objects of a second sort corresponding to equivalence
classes of quotients of integers modulo'infinitesimals; in particular,
the theory of real closed fields is interpretable in our theory.
Methods resembling nonstandard analysis are used in discussing calcu-
lus,'with additional sorts répresenting sets of real numbers and con-
tinuous functions. A few second-order propertigs of the real ﬁumbers
are discussed, and it is shown that similar techniques can be used to
gonstruct the p-adic numbers. We formulate a thecory of infinite
cardinals gquite different from the Cantorian theory. The use of many-

sorted theories, usually considered dispensable, is found to be essen~

tial in that our interpretability results would fail if the corres-

ponding one-sorted theories were studied instead.




e
§80. Introducition

Classical mathematics, it has long been recognized, is impredica-
tive. One of the primary sources of this impredicativity is the induc-
tion principle: each bound variable in each of the inducinn axioms
in Peano arithmetic is understood to range over all "numbers" —— that
is, over all objects satisfying all the axioms, including the one in
question. TFrom a classical point of view such circularity is entirely
permigsible; on the other hand; those who find it disfurbing'ﬁiil be
interested to know how much mathematics can be done predicatively.

Our goal here is a predicative formulaticn of two branches of mathe-

matics, calculus and set theory, using as a foundation the theory .of
predicative arithmetic developed by Nelson [1]. (References are listed

at the end of this Introduction. )

"Summany 04 Rebuﬁi#

The present work is divided into three parts. Part One, consisting
of §§1-3, is preparatory. The first section summarizes the maln features
of Nelson's theory QO , including the important concgpt of bounded
induction and the nonclassical behavior of unbounded notions such as
exponentiation. Also arithmetical in nature is §2, in which are pre-
sented refinements of QO that will prove useful later. This section
also illustrates a procedure to be followed continually: we strengthen
a theory by adjoining new axioms, and show that the new theory is inter-
pfetable in the old. For technical reasons as well as for convenience,
some of our theories will be many-sorted; an abstract logical introduc-

tion to many-sorted theories, ineluding the appropriate definition of

an interpretation, comprises §3.




The most important results presented here are probably the
predicative reproductions of theorems of elassical enalysis in Part
Two. After‘ﬁh, in which "fractions" are introduced in the theéry
QO

of exponentiation are used-to divide numbers into two types, the

, the heart of the matter is reached in §5. Here the properties

"finite™ and the "infinite". (There is an obvious precedent here

in nonstandard analysis. On the other hand, it should be noted

that the situation here corresponds to nothiﬁg in classical arith-
metic, since the induction principle is explicitly violated: O

is finite, and if n is finite then so is n+l , but not all numbers
are finite.) This distinction induces notions of infinite fractions
and of infinitesimals, and a relatién ~ of infinit;-closégéss.

Real numbers are introduced as objects éf a second sort corresponding
to equivalence classes of finite Tractions modulo the relation ~

It follows fairly immediately that the real numbers satisfy the usual
first-order axioms for real closed fields.

The theory is expanded further in §6. Additional sorts are
ad}giﬁedlfor, among other things, continuous functions on the real
ﬁumbers and closed seis of real numbers. Calculus is discussed in &7,
the derivative being defined as the real number represented by a dif-
ference quotient ((fCﬁ;~f(a))/(b—a) in Whi;h au and b a?e é?actions
guch that a~b but a # b |

Perhaps the flavor of the subject is best conveyed by citing a

few specific theorems. By (6.28), if £ 1is a continuous function

then

and Y, and Y, 8are real numbers with Yl <Y

2 2
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Domf = [yl,Yg] — Ea(ae{Yl,Yg]&VS(Be{YlaYgl > £{8) < flu)})

—— that is, every continuous funciion on a closed interval attains

a maximum. The statement of (7.2) is

N .

a<B&la,8] E_Domf&VY(u<Y<B >f is differentiable at 7v)
qy (a<y<B&Deriv(f,Y) = (£(8)-f(a))/{B-2))

—— the mean value theorem. Finally, asccording to (7.27) and (7.28),

a<péla,p] < Domf —= mlg(Domg = [o,Blevy(a<y<p >

g is differentiable at  y&Deriv(g,y) = fly))&gala) = 0)

]

—- every continuous function has a unique gntiderivative uwp to an
additive constant. The point of listing these theorems here is to
emphasize that they are not poor approximations to classical theorems:
rather, we are able to give predicative formulations of the concepts
of analysis in such a way that the classical results are provable with-
out so mucﬁ az a change in statement.

The situation changes somewhat in §8, in which we discuss rational
and algebraic numbers and decimal expansioﬁs; here the corregpondence
with traditional mathematics, though not hard to find, is less exact.
Tn the final section of Part Two we show how the techniques used in
constructing the real numbers can be modified to construct the p-adic
numbers; we carry p-adic analysis as far as Hensel's lemma.

While predicative analysis duplicates many results of classical

mathematics, the predicative set theory that is the subjeet of Part

, o .
Three is decidedly nonclassical in appearance. The theory (°  includes
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a notion of set, but it is a bounded notion, and many collections

of numbers -- for instance, the cbliection of all "finite" numbers —-
do not form sets. The first task facing‘us,(which we tackle in

§10, is finding a way to refer to such collections within the theory.
Using thg arithmetical hierarchy of recursion theofy as a guide, we
define notions of A,-collections, A3—collections,... . Tinally, in
§11 is developed a theory of infinite cardinality. The cardinality
of a coilection is determined not by one-to-one corresondences but

by approximating the collection from dbove and below by el (in

the sense of QO) and looking at thein cardinalities. Infinite cardi-
nals are partially ordered but in general not totally ordered; certain
collections called "pseudosets", however, have cardinalities that are
totally ordered. We prove several order properties of cardinals, and
observe that pseudoset—carainals admit very natural and interesting

operations of addition and multiplication.

Why predicative mathematics?

The predicative point of view is particularly compatible with
the philosophy of formalism, or nominalism -- namely, mathematics
consists of a body of axioms, theorems, and forﬁal proofs. Mathemat-
ical objects have no real existence, nor theorems physical signifi-
cance, Lebesgue measure, uncountable sets, forcing, and the category
of all categories are symbolié¢ constructions and nothing more. Many
mathematicians, even those who consider themselves formalists, seem
to believé that the set w of natural numbers really exists, and.

that the induction principle with all its impredicativity is unim-

peachable because it is "correct". Following Nelson, let us write




xny Tor «0 and 2¢n  for 2a(2a(2Aa...A2)) with n occurrences

of 2 ; then, according to this belief, numberé like 245 or

24(245) - are every bit as real as the humber of women on the'Sﬁpreme
Court or the number of light bulbs in Maine. But numbers, too, are
symbolic constructions, and "a construction”, writes Nelson in [1,81],
"aoes not exist until it is made".

The point is that to regard 245 as standing Tor a
.genetic number entails a philosophical commitment
to some idealistic notion of existence. To a nomi-
nalist, 244 stands for a number, 65536 , to which
one can count; but 245 is a pair of numerals with
a vertical arrow between them, and there is not a
scintilla of evidence that it stands for a genetic
number... . The infant counts on its fingers, the
mabhematician counts on w - but the infant at
least knows its fingers to exist. The mathematic-
ian's attitufe towards ® has in praclice been one
of faith, and faith in a hypothetical entity of our
own devising, to which are ascribed attributes of
necessary existence and infinite magnitude, is
idolatry. [1,818]

As an indictment of impredicative methods, [1,818] is clearly a hard
act to follow; the reader is referred there for further discussion.
One of the attractive features of the theory QP ig that it
can be proved consistent with very little machinery: one can give
a finitary proof using the "Hilbert Ansatz". (No claim is made for
a p&edicative consistency proof; indeed, GBdel's incoﬁpleteness
theorenm applies to Qp , 50 one could not hope to prove the consis—
tency of QP within Q?.) A1l the theories we shall use in our
predicative investigation of mathematics will be proved consistent

. 0 . . . .
relative to @, usually via the construction of an interpretation,

so these theories have finitary consistency proofs also. Trrespective

of gualms about impredicativity, a mathematician -- gspecially a
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formalist -- should embrace any theory known to be both consistent
and productive; we might summarize our work by saying that predica-
tive mathematics satisfies these criteria.

Is predicatiﬁe mathematics more trustwérthy than classical
mathematics? For some of us, at least, the answer is yeé. Is it
more productive, or even comparably productive?. That remains to
be seen, but it is at least productive encugh to stand on‘its own.
Is it more natuhaﬂf That is the most subjective question of all.
Occasionally someone speculates about what the mathematics of an
alien civilization might look like; I, for one, find it rather less
difficult to imagine little green men doing mathematics predicatively

than to imagine them s{udying Tebesgue measure and forcing.
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- §1.  Fundamentals of Predicative Arithmetic

This section 1s intended to serve both as a review of predica-
tive arithmetic for those who have read Nelson's book (1] and as a
summary of its relevant aspecfs for those who have not. One caveat
is in order: the corganization throughout is with an eye toward
concise presentation of the essential points rather than toward sys-
tematic logical‘development. Mach material that is vital for later
parts of [1] but is not otherwiée relevant here has been omitted,
and much has been rearranged. The moral is that he who attempts to
reconstruct all of Nelson's work using only this brief skeich as a

guide faces a considerable challenge!

]

Robinson's theory

In the course of [1] Nelson Builds up a powerful theory, here
calied Qo . that will serve as the starting point for our investi-
gation of predicative mathematics. At the heart of QO is
Raphael Robinson's theory § . In a formulation that is particularly
convenient in that all the nonlogical axioms are quantifier~free,
this theory has as its nonlogical symbols the constaﬁt 0 , unary func-
tion symbols S ("successor") and P (“predecessor"), and binary
function symbols + and + . The nonlogical axioms (hence the

designation Ax) of Q are

l.l) Ax 8x 75 o,

1.2) Ax Sx = Sy > X =Y o,

1.3) Ax x+0 = x , -




w1}

1.4 Ax x + Sy

= S(x+y) ,
1.5} Ax x:C =0,
1.6) _ Ax x-Sy = %y +x ,
and<
1.7) Ax Px = y <—> 8y = xv(x = 0&y = 0)

A finitary proof that Robinson's theory is consistent can be given

using the Hilbert-Ackermann consistency theorem (the "Hilbert Ansatz").

The thecry § is of course sufficient for some arithmetical

P

purposes. In it, for instance, we can prove the formulas

]

1.8) x-80 = x
and
1.9) x # 0 — wy{Sy = x) ,

and the binary predicate symbol < can be immediately adjoined to @

via the defining axiom
1.10) Def x < y <> Fzlx+tz = ¥)

Often of greater usefulness than provability or definability in @ ,
though, is the notation of {nterprefability in Q {see [2,84.7]). We
may regard as predicative any theory that is shown to be interpretable

in Q -~ that is, any theory for which an interpretation in some

extension by definitions of @ can be constructed. Of course, the

consistency of such a theory follows from that of 0 . In {1,56],
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Robinson's theory is quickly enlarged by the adjunction of the
associative, distributive, and commutative laws, and the neﬁ theory
is shown to be interpretzble in the cld. Each time we add new
nonlogical axioms to our ever-growing theory (actually, each time
with one exception to be noted in §5), we have a moral obligation
to prove such an interpretability resuit.

Many more common symbols {in addition to < ) can be defined
in the theory being constructed. The following expressions all
make sense in Nelson's theory QO , and behave in ways that one
might expect: x <y , x-y (defined to be O if x < y), Qt{x,¥)
and BRm(x,y) (the guotient and remainder upon division of x into
y), Max(x,y) ({(the larger of the two numbers), - x|y (the divisi-
bitity relation); x 1s a prime. We can definé the decimal digits
1,...,9, and may use ordinary decimal notation to refer to particu-
lar numbers. There are also unary function symbols | |2 (lx|2

is the largest power of 2 not exceeding x |O| = 1) and Log

2
(integer-valued logarithm tc the base 2 ; Log x = Log |x|2 5

Log 0 = 0}. Conspicuously absent from thisrlist is exponentiation,
not so much because it is complicated as because it is ill-behaved.
In fact, we shall see later in this section that a binary function

symbol A for exponentiation can be defined in QO ; the way in

which it fails to be "well-behaved", though, should soon be apparent.

Smash

. o
One of the most important features of the thecory 4] is a

binary function symbol # (pronounced "smash"). The basic property

o2 ; that is, on powers of 2 , #

of this operation is EK#EE =
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is te - as - 1s to + . ¥or general numbers x and ¥V , ndt
necessarily powers of 2 , the value of x#y 1is the same as

|x|2 # Iyle‘. Therefore x#y is always a power of 2 . Smasﬂ is
commutative, associative, and almost distridutive over multipication

{actually, x#(|y|2'|z|2) = (x#$y|2)-(x#|z|2); it also

satisfies x#l =1 , x#2 = \x|2 , and ¥ < z > x#y < x#z . Axioms

describing some of these fundamental facts are é part of Qp , and
the necessary interpretability*result is proved in [1,815].
The reader who wishes to think of x#vy as 2a{Llog x-Log v)
may do so; indeed, that eguality is a theorem of QQ . It cannot be
emphasized Loo strongly, however, that exponentiation is not invariably

so nice, and moreover that the "next symbol in line" after 0 , 8 , + ,

and - is not A but #

Induction by relativization

The principlé of mathematical induction, g8 discussed at some
length in [1], is impredicative and has no place in the theory QG
The objecticn that very little significant mathematics can be done
without induction is well-founded, however; in fact, many induction
proofs can be carried out in Qp . This point deserves elaboration.

To svoid depletion of valuable notational resources, let us con-
tiﬁue to denote by { +the theory that has been described thus far.
Tet O[x] be a unary formula {that is, a formula with only the one

free variable x) in the language of . Assume further that U

is {nductive {or, more precisely, inductive in the variable x in the

theory §) ; this means that [0} & vx{&[x] — T[Sx]} is a theorem
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of @ . The induction principle wouid allow us to conclude that
Tlx] holds for all x . Buch an inference is for us unacceptable,
though, unless we can show that the theory Q[T] obtained from (
by adjoining T as a new axiom is interpretable iIn a

As a first attempt toward constructing such an interpretation,
we might try relaiivizing by the formula € itself -- in effect,
refining our concept of "number" so that only objects satisfying
T are considered. There are two difficulties with this approach.
First, the formuia T might fail to respect the function symbols
of G . (Mo say that T respects a function symbol £ in @
means that E[xl]&m[xz]&...&m[xA] —_— E{ixlxg...xh] is a theorem
of @.) Inductivity of T ensures that T respects 0 and S , but
there is no such guarantee for + , + , or # . {We ignore defined
symbols for the moment .) The second problem is that the relativization
of T by itself may fail to be a theorem of !, in which case our
interpretation fails td be an interpretation of the theory Q[E] . (By

the relativization of T by itself we mean the full relativization

g

r[x] , which in this case is T[x] > EE[X] , where EE iz obtained
from [T by relativizing each quantifier to T.)

The first of these difficulties is the more easily surmounted.
A briel description of the method used in [1] follows. Write El[x]

> Cly]). Then " is inductive

for the unary formula vwyly < x

in x , stronger than T (that is, El{x] > T[x] is a theorem of
. : 1 .
Q) , and hereditary (which means that T xlew <x —= Ljw] is a

theorem of Q). Now write Egix] for the unary formula

1 1 . .
yy{T [y] —> T [y+x]); the formula EE is inductive in x , stronger

i

than T (hence stronger than I) , and hereditary, and in

2
addition L~ respects + . HNext, write EB[X] for
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Vy(me[y] — T [y-x]) ; the formula r> is inductive in x , stroager

than T , and hereditary, and E3 respects both + and

> ES[y#x}) . We summarize

Finally, write Eh[x] for Vy(EB[y]

the properties of Eh {ef. [1,§15, Proposition IIT]) in

Metatheorem A . Let T be an extension of the theory € , and
iet T be a unary formula in the language of T . Then the follow-

ing is a theorem of T

tlo]ayx(T[x] — Tiex]) —

(Eh{x] > Tlx])&

(T [x]8w < x —> T [v])& |
El‘{o}& n
(0% [x) — T [8x])e

(m“[xl]&m“[xg] —_— m“gxl+x2])&

(Eh{xlj&mh[xg] — Eh[xl'xé])&

(mh{xlj&mh[xz} § m“[xl#xz])

In light of Metatheorem A, it seems reasonable to construct an
interpretation using Eh instead of T . This method gives us at

. L
least an interpretation of the thecry @ in itself, since T respects

the function symbols of § and since the axioms of ( are quantifier-

free. We still face the problem, though, of whether the interpretation

L
of the formula T -- namely, Em -- is a theorem of Q .
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Nelson gives two examples that merit repetition here. If

Cix] is Fy(S80-y = x-(x+50)) , then T is an inductive unary

formula, and its relativization by Eh is

Iy L . '

o [x] > @y(T [y]&880.y = x.{x+50)) . This formula is a theorem of
Q , as the following argument shows. Suppose Eh{x] . Then UT[x]

by Metatheorem A , so there exists ¥ such that 8S0.y = x-(x+30)

h[SO] {by Metatheorem

Then y < x.(x+30) . But we have Eh[x] and T
A), so we have Eh[x-(x+80)] {by Metatheorem A), and therefore Eh{y]

(by Metatheorem A again). Thus Hy(Eh[y}&SSO-y = x.{x+30)) , as desired.
In this case, the interpretation associated with Eh is an interpre-
tation of Q[T] in Q , and, as such, gives us the green light to

work in the thecry Q[&] if we wish.

> gw(z-w = y}))

Now let Tlx] be mgy(y # 0&vz(z # O&kz < x
which asserts that there is a number divisible by all numbers from 1
to x . Again, T is irnductive in x in @ , but the method of

proof employed in the preceding paragraph leads nowhere in this instance.

4

There is here nc reason to helieve that EE, is a theorem of § , or
even that Q[T! is interpretable in § at all.

The crucial difference between these two examples is that in the
first instance the induction is bounded. In other words, we can say
in advance Jjust how big, in terms of x and the function symbols of
) (that is, the function symbols appearing in Metalheorem A), the ¥
such that 880.y = x.{x+50) will have to be. (Answer: not bigger
than x-(x+30).) 1In the second instance, on the other hand, no such

bound on ¥y is apparent.

Let us meke this general and precise.
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Bounded induction

Let T be any theory whose language contains the binary predi-
cate symbol < , and let X be a formula in this language. The
initial occurrence of gx in a subfofmula I¥XB of K is said to
be manifestly bounded if B is of the form x < a¥B' , vhere a 1s
a term not containing the variable .3 . The formula K& is mandigestly
bounded if every occurrence of an existential quantifiér is mani-
festly bounded; we regard vy 85 having been defined in terms of & ,
so the condition actually applies to abl quantifiers in & .

The important property of manifestly bounded formulas is essen-
tially what was checked for the formula T in the first exampie
above, namely the following "reflection principle". (Notation:

T{free &) stands for E[Ei]&...&m[ghl , where X0

L LX are the
A

variables occurring free in &.)

Metatheorem B, Let T' be a theory containing the binary predicate
symbol < , let T Dbe an extension of T' , and let € be a unary
formula of T that respects all function symbols of T' and is

hereditary. Let A be a manifestly bounded formula of T’ . Then

the formula T{free &) > (A <= B_) 1is a theorem of T

T

(This is basically [1,§7, Metatheorem 4].) It is a straightforward

matter to show that Metatheorem B leads in short order‘to

Metatheorem C. Let & be a manifestly bounded formula of § that

is inductive in one of its free variables. Then O[&] is inter-

pretable in




] &

.(The interpfetation is determined by Eh , where [ 1is. the unary
formuls obtained from & by appending to the front az universal
quantifier on each free variable other than the one in which &
is inductive.)

Let us now dencte by Q' the extension of ) obtained by
adjoining as new nonlogical axioms all "manifestly bounded induction"

formulas of the form

MBD)  Ax B{0]emgy(y<xtd [y]edlsy]) —> (y<x —> Aly]) .

where & 1is a manifestliy bounded formula in the language of )
To legitimize Q' , we reccrd

¢

Metatheorem D. Let B,,....B

1 \ be theorems of Q' . Then QDBl,...JB 1

A

is interpretable in @

(gee [1,87, Metatheorem 6]. The key observation is that each new
axiom (MBT) is manifestly bounded and inductive in x 1n g .)

Tt is an easy exercise to prove that the induction formula

Tnd) {(Alo]evx(&[x]

> Al8x])) —> Alx]

is a theorem of @' if & 1is manifestly bounded. The same is there-
fore true if A& is simply bounded in Q' -- that is, if & is
provably equivalent, in @' , to a manifestly bounded formuia.

(This is the case with the formula gy{S80:y = x-(x+80)) considered
earlier.) A mention of "bcunded induction" in a proof is simply a
reference to a theorem of the form (Ind) with & bounded.

Another useful form of induction available in @' 1s the "hounded

least number principle', which is
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BLNP)  ax,...0x E[xl,...,xl] —_

1 A
Hxl...ﬂxl(m[xl,...,xA}&wayl...ayA(ylgxl-... yxixl&yl#xl&ﬁ[yl""’yx]))
with & a bounded formula of Q' . If  dis 1 , it is convenient to

write minxﬂ for the (bounded) formula  Alxl&ay(y<x&E[y]), so that

(BLNP) becomes WxB[x] > meinxﬂ . As shown in [1,58], every
formula (BLNP) with X bounded is a theorem of Q'

The notion of houndedness ;an be extended to apply to defined
symbols. A predicate symbol p adjoined to Q' via a defining axiom
DXy -« Xy <> D 1is said to be bounded if the formula D (in the
language of Q') is bounded. Tikewise, a function symbol f adjoined

]

to Q' via a defining axiom ixl...xA =y <—>1D {with approprisate
existence and uniquenéss conditions‘holding in Q') 1is bounded if the
formula 9yl (not justID)- is bounded. A standard fact about defined
symbols is that they are eliminsable, in the sense that every formula
involving a defined symbol can be effectively replaced by an equivalent
formula in which the symbol does not appear (see [3,5741); a S&mbol
is bounded precisely if its elimination from a'bounded formula always
yields a bounded formula. In the theory Qp we may apply bounded
induction to any bounded formula in which all defined symbols are bounded.
The symbols - , Qt , Rm , Max , | , is a prime, | |2 , and
Loeg mentioned previously are all bounded. (We can now see one of

0
the several reasons why the operation # is so vital a part of Q7

numerous formulas and defined symbols, including ZLog , can be shown

to be bounded in terms of # but not just in terms of the simpler
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operations 5, + , and - .)  The exponentiétion symbol . A,
more discussion of which will follow shortly, is not bounded.

With our discussion of bounded induction, we have completed
the description of QO except for a large number of defined symbols --
some bounded, some unbounded. ILet us use Qg to denote the theory
obtained when the unbounded symbols and their defining axioms are

0 .
removed from Q. We shall have occasion to use

Metatheorem E. Let T be a unary formula in an extensicn T of

0 . Assume that T is hereditary and respects 0, S ,+ 45 s

and # . Then [ respects every function symbol of Qg . Moreover,

if & is a nonlogical axiom of Qg , then Em is a theorem of T

(In particular, & could be the defining axiom of a bounded function
0 . .

symbol of @ 3 it follows that such a2 symbol does not change its

meaning if its defining axiom is relativized by I . Metatheorem E

is an easy extension of Metatheorem 7 in [1,815].)

Sets, functions, and sequences
There is introduced in [1,§10] a procedure, the details of which
need not concern us here, whereby a finite set of numbers can be encoded
as a single number. This allows the definition of a unary predicate
symbol indicating that a number is (i.e., encodes) a set. There is

also a binary predicate symbol e , and the extensionality property

1.11) s and b are sets gyx(xea <—> xeb)

> g = b
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5 | ;
is a theorem of { . Both of these predicate symboils are bounded,

as are several other defined symbols involving sets: n , U , <€

{ 1} (a unary function symbol: {x} is the set whose only member
is x) , Card , and Bd (if a is a set, then Card a 1s the
number of elements in a and Bd a is its largest element ). Two

useful theorems [1, {(10.28) and (20.5)] are

1.12) Xea—> X < &
and
1.13) " Card a < Log a.

Hence a bound on a aubtomatically implies a bouﬁd on Bd a and-a
logarithmic bound on Card a . Conversely, if showing a formula to
be bounded requires establishing a bound on a variable X that is
always to designate a set, then it is sufficient to obtain a bound on
Bd x and a logarithmic bound on Card x . Not just any bound on
Card x will do: a fact that will prove very useful later is that,
in the absence of exponentiation, there may well be numbers larger
than all logarithms!

The empty set, conveniently, is the number 0 . It is alsc
sometimes convenient to know that the number 1 1is not a set at all.

One should be cautioned against using sets that have not been
shown to exist. There is no guarantee that an arbitrary set has a
power set or that, given n ,.there is a set of all numbers from O
to n . Above all, a "subclass" of a set may fail to be a set; that

is, if a 1is a set and Eix] 1is a formula, those elements X of

a such that &[x] holds may not form a set. There is, however, &
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principle of "bounded separation" [1,§11] that allows formation.

of the set {x ¢ a: &[x]} if & is a bounded formula. There is

also a bounded unary function symbol Setlog that gives, for each n ,
the set of all numbers not exceeding Log n .

Ordered pairs are defined in [1] by the formula
1.1h) Def <x,y> = (x+y)-(x+y) + v .

The definition satisfies the usual ﬁroperty

1.15) XSV = <Ky a¥,” > x, T ox by, =y,

1 271

and alsc the convenient relations

]

1.16) X < <X,yr&y < <%,y
and
1.17) Xy S X B Y S Y, T X LYY L <X50Yp0

The function symbol < , > ig bounded, as are the symbols

Projl (Projl<x,y> = x) , Proj, (Proj2<x,y> =y) , and x (cartesian

product ).

There follows the usual definition of a function as a set of
ordered pairs. A binary function symbol (+) is introduced,
allowing the notation f£(x) = y . For every function £ there are

sets Dom f and Ran f , satisfying & few obvious theorems. All of

these defined symbols are bounded.
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Let Ix,y] bte a formula of QO (possibly containing free
variables besides x and y)., If for every element  x .of_a‘set a

there exists some y such that DIx,y] , then one might expect there

to be a function f such that Dom f = a and vyx(xea >]D{x;f(x)]).
Again, the crucial property turns out to be boundedness -- this time
boundedness of the formula dyD[x,y] . The "bounded replacement
principle" [1,517) asserts that under this condition such a funetion
exists; in fact, one such function is {<x,y>: xea&min%D[x,y}}

A sequence is:defined as a function whose domain. is the set of
numbers from 1 to n for some n . (That such a set may not exist
for every n is of no conseguence as far as this definition is con-
cerned.) Every sequence u has a length In u (possibly 0: the
empty set G 1s a sequence!) satisfying the suggestive-looking

ineguality
1.18) . Inuc< Logu,

snd also a largest term Sup u {the same as Bd Ran u). Corresponding
to our earlier comment about sets is the fact [1,§19]) that

for the purpose of showing a formula to be bounded, establishing

a bound on a sequence u is tantamount to establishing a bound on

Sup u and a logarithmic bound on Ln u .

et uw and v be sequences. The relation sum(u,v) means

that Inmu=In v and u(l) = v{1) and vi(l<i<Inm u > v(i+l) =
v(i)+u(i+1l)) ; in other words; v is the sequence of partial sums

of u . For every sequence u there is a unigue v such that

sum(u,v) (this is a good exercise in the use of (BILNP)); this v

is denoted Eu . Note that zu, is a sequence, and that the sum of all
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the terms in u is the number (Xu)(Ln u). The notations
prod (u,v) and Ilu are defined similarly.

The juxtaposition u%v 1is the sequence whose leﬁgth.is
In utin.v and wheose terms are the terms Of. 1 followed by the
terms of v . If s 1is a sequence all of whose terms are seguences,
then s* is the Juxtaposition of all of those sequences; In s* is
the sum of the lengths of the sequences in s . If I1<i<j<Inu , then
uli,j] is the seguence that lists the terms of u from u(i) to
u{j) ; its length is j-i+1 . If =a 1is a set, then Enum a is
the sequence that enumerates the elements of a in increasing order.
The symbols + 1s a sequence, ILmn , Sup, sum , { , prod ,

*
m, -%. , « =[-,.J » and Enum, as well as a few others, are described

fully in [1,§519-20]; in particular, all are shown to be bounded.

Exponentiation
In [l,§13] appears the following definition of a bounded predicate

symbol:

1.19) Def exp(x,k,f) <> f is a function &yi(ieDom f <—> i<k}&
£{0) = 1 &Vi{i<k <> f(i+l) = x-£(i)).
If exp(x,k,f) , then (k) 1is the number we like to think of as xk

The ususl laws of exponents, albeit in rather unattractive forms, are

easily established for exponenfial functions of this sort.

Now consider the definition
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1.20) Def e({k) <—> gf exp{2,k,f)

of a presumably unbounded predicate symbol. Then e(k) essentially
asserts the existence of a sequence whose terms are the first k
powers of 2 . If k = Log n for some n , then such a sequence can be

formed; in fact, e(k) holds if and only if mn(k = Log n) (or equivalently

an{k i‘Log n)) . The unary formula e(k) is hereditary. Moreover,
from the theorems Ilog (2+n) = 8(Log n), Log (m'n) > Log m+tlog n ,
and Log {m#n) = Tog m-Log n , it foliows that e respects 85 , + ,
and - . ({The last of these assertions is another example of the
importance of # . Note, though, that we cannot at this point prove
I

that e respects #.) Writing es(k) for T [k] , where Tik] is

the unary formula e(k)J, we therefore have the theorem 53(k) < ¢{k)
If x > 2 , then the existence of an f such that exp(x,k,f)

is equivalent to the existence of a g such that exp (2,k-(Log xtl),e) ,

which just means e(k-(Log x+1)) , or just e{k) . Hence we have

the alternative definition e{k) <—> yxaf exp {x,k,f) ; it is this

form of the definition that appears in [1,§14]. We may regard e(k)

2s the statement "k is exponentiable"; the base is irrelevant, but

2 1is generally the most convenient choice,

The way to define the function symbol A for exponentiation

should now bhe clear.

1.21) Def xAk = z <> uf(exp(x,k,f}&f(k) = z) , otherwise z = 0
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This is our first encounter with the "otherwise" noﬁatipn, and some
explanation is required. If there exists a =z such that
af(exp (x,k,f)&F(k) = z) , then xAk 1is that 'z : if there is no
such z , then =xAk is O . In definitions of this kind, the exis-
tence condition is automatic, but the uniqueness‘condition must shill
be verified. Note that in this instance the "otherwise“ clause comes
into play precisely if =—e(k) {even if x is 1).

Often we will write = rather than 2xak ;3 at other times
the notation xAk will be clearer.

The symbol A , like ¢ , is unbounded. The unboundedness
lies in the fact that it is not clear, given k , how big an §
such that exp(2,k,f) must be. TIf k = Logn , then it can be
shown [1,(16.32)] that £ < 18250#(2.n)#(2.n) , but this is not
sufficient to make ¢ or A bounded since the bound is in terms of
n  rather than in terms of k . If the symbol e weie bounded,
then, since e(k). is inductive in k , we could conclude vke(k)
by bounded induction; Nelson gives an argument to show, however,
that vke{k) is not a theorem of QO . (More about this later: we
shall eventually strengbhen our theory by postulating the existence
of a number N such that =¢(N).} In any case, there is a bounded
function symbol Explog with the property that Explog (x,k) = xalog k ;
if x # 0 , then Explog {x.,k) is never 0 , since e(Log k) always
holds. (Ncte, incidentally, thai by (1.13) and (1.18) we have

e(Card a) and ¢(Tn u) also. Tt is a theorem of QO that e{n) holds

if and only if there is a set of all numbers not exceeding n.)
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This completes our summary of the important features of the
0 .
thecry @ . To be precise, we declare that Qp ig Nelson's theory
QQ — theltheory éonstructed in the first 20 sections of {1]. This

is a provably consistent theory, and it is from here that we shall

now embark on our voyage Lhrough predicative mathematics.
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§2. Hypersmashes and Highen Relativization Schemes

It seems reasonable to ask whether the chain of function
symbois O , 8 , + , » , # can be extended in a natural way. This
section is devoted to answering that question in the affirmative.

The objects of our investigation will be binary function symbols

#1’#2,...,#u,... with the property that ek#lel = EK#R .
k# 2 k# 2
k -
QK#EQR = e e y? #QEQ =p ¥l ye-+ « {No claim is made about

a ternary operation x#ny.) We shall see that, in a suitable

. 0 ’
extension QlJ of 07 , the symbols #l,...,#u may be regarded
as bounded.

Let us first note a reascn why having these symbols at our

disposal will be advantageous.

The problem

Consider the definitions

2.1) Def ¢ (k) < e(K)se(2) ,

Def e, (k) <— e, (K)ke (2 ,

Def ¢ (k) «— ¢ (k)&e (2
U T

Then el(k) asserts that Xk is twice exponentiable, e,.(k) asserts

2
that k 1is three times exponentisble,... . To nip confusion in the
bud, we observe that the three dots do notf conceal an induction. The
subscripts 1,2,..3u,... are (in Nelson's words] "genetic" rather

than "formal™; we have not defined a binary reletion .e (k) , nor do

ot
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we even claim to have defined Eu(k) "for all ¥ " {whatever that

would mean}. We have simply shown the reader how to write down
definitions of E“(k) for as many M as he likes. In practice,

very small M  will suffice -- maybe W =25 or even W =2 |

It is clear that every Eu is hereditary. We would like to

know that every E]J respects 0 , 8 , + , and * , as & does. But
the assertion that EU regpects . 1is equivalent to
k J £ kK, %
&e 21 &e £ > € A ge
ey tkEe (2ee, (27)ee  (27) pq (ke ee (27#20)

and proving this requires showing that Eu 1 respects # -- a definitfe
problem, since we do not know even that e i1tself respects # . We

can make € respect # , nowever, by introducing the symbol #1 ’

thereby obtaining the theorem

Log x#Log v = Log (x#lY) >

which suffices for the proof that € respects multiplication. The

corresponding results for 32,53,...,5U,... reguire the symbols

# o Y P

29 35"' ]_]
The reader who is willing to accept the fact that this program can

bte carried out may skip the remainder of §2.
Axioms fon #l

We shall adjoin #l to the theory QP in a manner strongly

reminiscent of the way in which Nelson adjoins # +to the theory

involving only 0 , 8 , + , and - [31,88b-15].

|
i
i
!
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I . .

Write e (k) for Eh[k] , where UCfk] is the unary formula

e(k) . Showing that ¢ respects # is tantamount to proving the
X . T

theorem € (k) <—> e¢{k) . 1In any case, € is inductive, so by

Metatheorem A the following is a theorem of QO :

2.2) (X (k) —— e (r))ule (k) pick ——> £*(1))8e " (0)8 (k) —> e (5K))8
(Eh(k}&Eh(ﬂ) > Eh(k+2))&(eh(k)&sh(l) > gh(k-l))&
TR

s (n) — o)) .|

2.3) Def xAlk = g e eh(k)&ﬁf(exp(x,k,f)&f(k) = z), otherwise z = 0.

2.4) Eh(K}

:

> xAlk = xAk . H

2.5) ah(k)&sh(i)

s Geyagk = (oak)s (yagi)aacn, (42) = (xn k) (o, 0)

xAl(k-ﬁ) = (Xhlk)Aiﬁ&(2Alk)#(2A12) = 2Al(k-£)
Prood. By (2.2) and (2.4), together with basic properties of
A and # . ”

2.6) Def Al(x) <> ¥k X 5_2Alk ..

hv]

7Y () (x) Bwsx

1 > X (w))&xl(o)&(Al(x)-———> Al(Sx))&(Al(x)&

1

> Al(X+y))&(Al(X)&Al(Y)

A () (x)&r, (y) —

1

> A (xey))&(n

1 1
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Proof. The first two conjuncts are immediate. TIf x < 2nk
and y < 2A.0 then 8x i_?Al(k+l) , Xy E_EAl (Max (k,2) +1) ,

Xy §_2Al(k+2) , and x#y §_2Al(k-l) . H

Of course x < 2r{log x+1) always holds; since there is no

guarantee that ah(Log x) holds, however, Al(x) may still be

false. On the other hand, when we eventually prove {in a stronger

I

theory than QO) that ¢ (k) «<— ek} , 1t will follow immediately

that Al is the same as A anﬁ_that Al holds universally. Here

is one more soon-to-be-uninteresting definition:

2.8) Def Log,* = K <= ]x|2 = 2ﬁlk , ctherwise k = O
‘ ’ b
2.9) e (Log x) . ||

2.10) Al(x) g eh(Log x) .

Procf. The formula Al(x) is true precisely if x < 2ak for
some k such that eh(k) , If this is the case, then k > Log x ,
S0 gh(Log %) by (2.2). Conversely, if eh(LOg x) , then gh(Log x+1}

by (2.2), and certainly x < 2a(Log x+1) . ||

(x)

2.11) > Log x = Log x&|x|2 = EAlLov X .

A g

Proof. If Al(x) , then -gh(LOg x) by (2.10), so (2.4) gives

|X|2 = 2aLog x = 2a.Log x , as required by the definition (2.8). I

2.12) A, (2agk) |

1
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Now for an "interesting" defining axiom:

2.13) Def x#ly = 2A (Loglx#Logly) .

1

2.1h) x#ly = EA(Loglx#Logly)

Proof. By (2.13) and (2.4), it suffices to prove eh(Loglx#Logly) :

this follows from (2.9) and (2.2). ||

2.15) Al(x#ly)

Proof. By (2.13) and (2.12). ||

2.16) ' x#ly = |x#ly|2 .

:

Prood. By (2.14) and E(chlx#Logly) A

2.17) Logl(x#ly) = Loglx#Logly .

Procf. By (2.16), (2.13), ana (2.8). ||

2.18) A (x)&r (y) > Log(x#ly) = Log x#Log ¥y -

1 1

Proof. By (2.15), (2.11), and (2.27). ||

s 0 .
Let Qp be the extension by definitions of @ obtained by

A
0
adjoining Ao Al ) Logl , and #1 as above. Let @ be the

theory obbtained from Qo by adjoining a new binary function symbol

#l and the nonlogical axioms (2.19) and (2.20):
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2.19) fx x# )y = ]x#lY!2 ;

2.20) . Ax Log x#ly = Log x#log ¥y .

A A
0 . . .
Let Qb be obtained by removing from QO all unbounded defined

0 . - - .
symbols of 0 and their defining axioms (or eguivalently by

adjoining to Qg the symbol #l and the axioms (2.19) and (2.20)).

A A :
0 . . PR
Then O is an extension by definitions of Qg , and we shall be

A
free to work in ¢ as soon as we have proved

7 A
Metatheonrem Fl . The theory Qg is interpretable in QO ;

:

A
Proof. We exhibit an interpretation T of Qg in the extension
. =0 0 .
by definitions §  of Q . Let the universe of 1 be Al . For
each nonlogical (function or predicate) symbol u of Gg (that is,

-

. AQ
for each u in Qb other than #l) » let u, be u , and let (#1)1

be #l . By (2.7) and Metatheorem E , the interpreting formula Al
respects every function symbol of Qg , and moreover EI is a theorem
of -EO for every nonlogical axiom A of Qg . By {2.15), Al respects
(#1)I in ép , and the interpretations of axioms (2.19) and (2.20)
nold by (2.16) and (2.18) (the function symbols | |2 , log , and #
being bounded). 1

Tt follows from (2.20) that ¢ respects # . Hence 1t is a
theorem of aO that Eh(k) <o e(k) . IT we extend ap by adjoining

the defined symbols of 'QO , it is then immediate that xﬂlk = xk ,

that Al(X) is equivalent to Hkx < 2Ak and therefore holds wniversally,
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and that Logl has the same meaning as Log . Furthermore, {2.19)
and (2.20) together imply that x#ly = 2A{Log x#Log y) ; comparing

(2.13), we see that x#ly = x#ly . Hereafter we shall always write #1 .

Some hypersmash-arithmetic

Tet us prove a few theorems in ﬁp . We are free, of course,
to use X#ly = 2Aa{Log x#Log v)
2.21) X#10<= 2
Proof. This follows from x#0 = 1 we have
x#,0 = 2a(Log x#0) = 2l = 2 I
2.22) | x#ih < X -
Proof. This follows from x#2 < x : we have

x#lh = 2k , wvhere k = Log x#2 < Log x . H

2.23) X < (x#lh)#h .

Proof. This follows from x < (x#2).2 : we have
Log ((x#lh}#h) = Log (X#lh)'LOg b = {Log x#log L) Log U
= (Log x#2)-2 > Log x , whence (2.23). |

The next three propositions follow from the corresponding facts

ahout #

2.2l) x#ly = yh % . i




2.25) x#l(y#lZ) = (X#ly)#lz .

0.26} y <= > x#y < x#2 i

2.27) Log Log ¥ = Log Log z —> x#ly = x#lz

Proof. This follows from Log y = Log = > xffy = x#z
Replacing x , ¥ , and z by Tog x , Loeg ¥y , and Log 7z in that
theorem, we see that ILog Tog ¥y = Log Log z implies

Log x#7og v = Log x#Log z ; exponentiating then gives x#ly = x#lz .

2.28) Log (x#ly) = |Log(x#ly)lg .

Proof. This follows from x#y = |x#y|2 and (2.20). H

So a hypersmash is more than just a power of 2 : 1t is a power
of 2 with an exponent that it also a power of 2 . If we start
with x#y , we can apply ILog , then exponentiate, and get x#y back.

If we start with X#ly , we can apply Tog Jdwdice, exponentiate twice,

and get X#ly back.

2.29) x#l(y#z) 5_(x#ly)#(x#lz)#x .

Proof. Let us first establish the lower-level analog

x#(y-2z) < (xhy) (x#z)-x . We have

Log (x#{y-z)) = Log x-Log (y-z)

< Log x-(Log ytLog z+1) = Log x-Log y+Log x-Log z+log X .
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Exponentiating the left side gives exactly x#{y-z) ; ekponentiating i
the right side gives at most (x#y)-(x#z)-x .
We now use this result to prove (2.29). We have
Log (x#l(y#z)) = Log x#log (y#z) = Log x#(Log y-Tog z)
< (Log x#log ¥y)-(Log x#Log z)-Log x

Exponentiating gives (2.29). ” .

Finally, a result about #

2.30) x> Bay > 8 —> xy < x#y .

Proof. Note that ,x > 3&y > 3 > x+y+l < x*y . Therefore,
if x> 8 and y > 8, then

I

{

Log (x-y) < Log x+Log y+l < Tog x-Log y = Log (x#y) . | !
Induction on #1‘ i

Our work with #l is almost complete. The one remaining i
order of business is the construction of a theory Ql in which #1 ’

may be regarded as a bounded symbol in the most important way --

that is, in which we may apply induction on bounded formulas involving

#1 . To this end, we make the expected definition
!
5 L b
T’ [x] for wy(C [y] > T [y# x)) s
here [[x] is a unary formula, and Qu[x] ig as defined in §1 . The

analog of Metatheorem A in this situation is
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. A
Metatheorem Gl . Let T 7be an extension of the theory. Qg , and

let T be a unary formula in the language of T . Then the following

is a theorem of T :

vlo] gyx(T[x] — T[sx])

(°[x] —> Tlx]%

(2 [x)ie < x —> 0wt
m5[0]&

(27 [x] — T’[8x])&
(0703, 1607 [x,] = T [x +x, ))&
(€ [x, 1687 [, ] —> 70x; %, )%
(012 1807 [x,] —> T°Lx #x, D)o
(07 [, 1687 [x,] —> 7 [x #, %, 1)

Pnooﬁ. We may work in an extension by definitions of T con-
taining all the symbols of ao , and we assume throughout that
r[ol&vx(T[x] — E[Sx]) . Our basic tools are (2.21)-(2.30) and
Metatheorem A.

o

‘ L
%] . Since Eh ie inductive, we have T [4], whence

5

Suppose U

Eh[x#lh] by the definition of T and (2.24). Since Eh respects

# Eh[(x#lh)#h] holds; since Eh is hereditary, by {2.23) we

have Eh[x] and therefore UT[x] . Thus E5[x]

> Tlx]
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Suppose E5[x]&w E_X&Eh[y] . 'Then Eu[y#lx] . By (2.26),

> Es[w}

y#lw i.Y#lX . hence Eh[y#lw] . Thus EB[X]&W < X

mS[o} is immediate from (2.21) and mh[e] .

Now suppose E5{xl]&m5[x ] . "We shall complete the proof of

2
“(x.#.x.) , T

Metathecren G1 by showing T 171%s

Xl#XQ) , L

5(X1+x2) , and ms[sxl]

re iyl L then D'[yhx] (by Do(x1) , so T [(yé x )#x)]
Jioe JE EL DY 1°7 > AR RS R

(by E5[X2]) , SO Eh{y#l(xl#lxg)l {by (2.25)). This shows

5
T [Xl#1x2] .

L i Y
Tf T [y] , then F {y#lx1} and T {y#lxg] , SO

N - '
o[ (y# x ) #(yh x, )8y - By (2.29), y# (x #x,) < (vt x WA 0y s

50 Eh{y#l(xl#xg)} . This shows EB[xl#Xe] .

By (2.27) and (2.22), we have y#18 = y#lh <y . Hence

Eu{yj — Eh[y#lB} , or in other words ES[B} . Define ¥Fx = Max (x,8) ;

+hen ES{X] —_— EB[FX] . 9till under the assumption that ES[Xl]&ES[XE] .

we therefore have (by what we have already proved) EB[FXE#FXE]

Using Fx, > 8, Fx, > 8§ , (2.30) , and the knowledge that E5 is

hereditary, we get
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Xyt %, E'in.FXQ i‘Fxl#Fxér, SO ES[XI-XE] ;
X ¥x, E.FX1+FX2 f__Fxl-Fx2 < Fxl#sz , 50 E5[X1+32} 3
and le E.SFXl f_Fxl+Fx2 i_Fxl-FxE E_Fxl#Fxg » SO E5[le} .
s T [xy 1607 (x, ] D [5x, 087 [y #x, 188 [, 3, 887 Lo ey 1007 L #,] j

Let Q} be the theory obtained from ap by adjdining as new
nonlogical axioms all formulas pf the form (MBI) (see §1) with & a
manifestly bounded formula in the language of ag . Let Q% be oblained
from Q} by removing all unbounded symbols of Qp together with their

defining axioms; note that the new axioms (MBI) do not involve any of

these symbols.

Metatheorem Hi . Tet T be a theory containing all the symbols of

A
Qg . Let T be a unary formula of T +that is hereditary and respects

0,8 ,+,,#, and #l . Then T respects every function symbol
AQ . . ALe .
of 0, . Moreover, if T is an extension of 0, and & is a non-
N

logical axiom of Qb , or if T is an extension of Q% and & is a

nonlogical axiom of Q% , then Bm jg a theorem of T .

Proof. By Metatheorem E , T respects every function sumbol of

Qg ; by hypothesis, T respects #l also. The last assertion as

0
well follows from Metatheorem ® if & 1is a nonlogical axiom of Qb

If A is {2.19), (2.20), or one of the new axioms (MBI), then A&

A
ig manifestly bounded; letting T' Dbe Qg in Metathecrem B , we see that

E— E¢ (that is, & —— (E{free &) —> AE)) is a theorem of T
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A .
as long as T 1is an extension of Qg . Therefore if & 1is a

theorem of T'? 50 1s EE . H

A
; 0
Metatheonrem Ii‘ Let A& be a manifestly bounded formula of Qh that
AQ):
is inductive in one of its free variasbles. Then Qg[ﬂ] is inter-
AD

pretable in Qb .

Proof. Let B Yve inductive in x , and let t[x] be the unary

formula obtained from & by appending to the front a universal quanti-

fier on each free variable other than x . Then T[x] is inductive

in x . By Metatheorem Gl . E5 is stronger than € , is hereditary,

and respects 0 , 8 , + , + , # , and #1 . By MetatheoremHl ) E5

: ! A

respects every function symbol of Qb , and moreover the relativi-

: 5 . . "o

zation by U of every nonlogical axiom of Q_b is a theorem of

/\O 5 A

Qb . Since T7[x] > & is & theorem of Qb , it follows from
o AQ 5 .

Metatheorem B that A is a theorem of Qb . Hence T determines
™0 "0

an interpretation of Qb[ﬁ] in Qb . ”

Metatheorem JI' Let B, ,...,B, be theorems of" Q% . Then

A
A

A
0 . . . 0
Qb&Bl"";BA] is interpretable in Qb .

Procf. TFach new axiom (MBI) is manifestly bounded and inductive

AD
in x in Qb . Hence the conjunction A& of all the new axioms (MBI)

used in proving :BE""JBA in Qi is manifestly bounded and inductive

. Ao A0 : R

in x in Qb . By Metatheorem_ll . Qbiﬁ] is interpretable in Qb .
~o

Now we need only observe that Eﬁf"';BA are theorems of Qb[ﬂ] and

apply the interpretation theorem [2,84.71. |
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Combining our various interpretabllity results, we see that if
:Bl""JBA are theorems of an extension ﬁy definitions of Q} (itself
an extension by definitions of Q%) , then the theory whose nonlogical
axioms are TEl,...JBA is interpretable in QO , or even in Robinson's
theory @

As in §1, it is a simple matter to check that every induction
formula (Ind} in which & is & bounded formula of Qi is a theorem
of Qi ; in fact, the formula A may contain bounded symbols of
some extension by definitions of Qi . (Note that the bounds in a
bounded formula may now involve #1.) We may also apply the bounded

least number, bounded separation, and bounded replacement principles

under corresponding conqitions.

Highern smashes
From the foregoing discussion it should be clear how to proceed

to further adicin symbols #2,#3,...,#u,... . For #2 , we begin

. . . 2
working with 55 in Ql ; define Ay s AE ) Logz, and #
(x#gy = 2A2(Log2x#lLog2y)) , forming the theory ﬁl : and establish

1

n i
the obvious analogs of (2.2)-(2.18). The theory (  consists of @

together with the symbol #2 and the two axioms X#EY = |X#2Y‘2

and Log'(x#gy) = Log x#lLog ¥ . Using Metatheorem H1 in place of
Metathecrem E , we prove Metathecrem F2 , which asserts interpre-
tability of ai (ﬁl
Q.

is the same as £ A2 the same as A Ag trivial, Log2 the same

as Log, and #2 the same as #2 . We use (2.21)-(2.30) to establish

without the unbounded symbols of QO) in
| 5

A .
We can prove in Ql that & respectis #l , 8¢ that ¢

their higher-level versions (for instance, (2.23) and (2.27) become
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X < (x#216)#116 and Log Log Log y = Log Log Log z > x#gy :‘x#gz) .

and use these results in proving Metatheorem G2 . In the theory

Q2 we admit bounded induction on formulas containing #2 ; the re-

maining items on our level-2 agenda are Metatheorems H2, 12 , and

A
J2 , the last asserting that Qi is finitely interpretable in Q%
At this point we are ready to go to work on #3,... ., The mimicry

is sufficiently straightforward that only one point merits further
attention: this concerns the numbers 2, 4, and 8 that appear in
(2.21), (2.22)-(2.23), and (2.30) and in the proof of Metathcorem G, .
A iittle fhought shows that these numbers will increase superexponen-

+iglly with p 3 in particular, whereas for Metatheorem Gl we used

mh[h] , in Metatheorem G, we shall need m5[16] , and then E6[216] .

2
7 216
t'ie Jyeer - Will this make our proofs unfeasible by the time we

get to #, or #5 % Not at all: we have the theorems 16 = L#h ,

16
2
216 = 16#116, 2 = 216#2216,..., and we can use the knowledge that

2 respects # , E6 respects #. , ET respects #

L 1

pac e

The probfem, nevisited

Recall the definitions {2.1) of and the discussion

El,EE,.-.

that motivated the irtroduction of #1’#2"" . It is convenient to

regard e &S £, Then for u = 0,1,24«--, au+1(o) says that

gu(O)&gu(l) ; hence if £ respects 0 and S , then ¢ repects

u'i'l

0 . Also, =€ (sx) is ¢ (SX)&gﬁ(2X+2X) ; hence if Eu respects
U

utl
8 and + , then €u+1 respects 8 . Next, eu+1(X+Y) is
. X ~Y . .
e (x+y)&e (27-27) ; hence if ¢  respects + and - , then ¢
i U y ptl

respects + . It is easy to see that if Eu respecté - and #
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respectivel . -
( pectively, # and #l R #l and #2,. ’#A and #A+1""} ’
then ¢ respects - (respectively #,# ,..,# ,...} . To
p+l 1 A
summarize :
1
In @7, ¢ respects 0 , 8 , + , ", # 3
£y respects 0 , 5 , + , - .
2
In @7, « respects 0 , & , + , - , # , #1 H
£ respects 0 , 8 , 4+ , « , # 3
€, respects 0 , 8 , + , - .
In Qu, £ respects O , 8 , + , + 5 # ., #1,--.,#u_1 e
El respects 0 , 5 , + , + , # o, #l,'."#}l"'g 2
£y respects 0 , 8 , + , * , #, #l""’#u—A—l 5
€1 respects 0 , 8 , + , ° , # ;
gp respects O , B8 , + , " .
The theory QP in which we choose to work may depend on what 1is
required of the various Ey . If we want g to respect -, we

8

shall not hesitate to work in Q7 .
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§3. Genenal Properties of Many-Sonted Theories

In studying mathematics predicatively, we shall {ind it advan-
tageous to work in a theory in which there is more than one kind of
object. This section presents an introduction to such "many-sorted
theories", with emphésis on the syntactic notions that will be of
use to us: interpretatiocns and extensions by definitions. (The
generalization from the cne-sorted to the many-sorted éase ig on the
whole straightforward, even obvious. It is simply to familiarize
the reader with the appropriate concepts and notation, and because
I know of no good exposition to which he can be referred, that the
main points are outlined here.) There follows an application of
many-sorted theories to‘the general problem of constructing equiva-
lence classes for a given equivalence relation.

In this section and this section only, numbered formulas need

not be axioms, theorems, or definitionsg in a specific theory. Their

function will be explained as necessary.

Many-sonted Languages and theories
A v-sonted Language L (v = 1,2,...) may be described as follows.
Associated with [ are sonts R PYTREC A The symbols of L are
the following:

(i) For each sort T among o . 0 , the varniables of sont
: v

1o
L XX
TI XgsXpsere
(ii) Certain predicate symbofs, each of which has a fLype
(TlaTE,---;TA) for some (not necessarily distinct) sorts TyseeeoTy
BIONE  Oqse--s0 - Such a function symbol is A-any, or of deghee X .
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If T P are all the same sort 1T , then the predicate

1’ A

symbol is said to be of sort =< ..'In pafticular, we require that
for each sort v there be a binary predicate symbol =T- of sort T
(of type (1,1))

(iii) Certain function symbols, each of which has a type

(Tl,Tg,...,TA;T) for some (not mecessarily distinect) sorts . .T

lﬂ' )\3
T &mONg Ogs---50, . Such a function symbol is A-ary, or of

degnee » . If the sorts and T are all the same, then

100 )
the function symbol is said to be of sort =t . Of course, A may
be 0 , in which case the Punction symbol is a constant symbol of
sont T

(iv) The usual complement of comnectives and quantifiers (as

usual, = , ¥ , and E will suffice).

The ferms of L are built up from the variables via the function

symbols; each term has one of the sorts Ol""’gv associated with
it. Rvery variable of sort ¢ 1s a term of sort 1 . IT Ei""’éﬁ
are terms of sorts Tys 5Ty respectively, and if I is a A-ary function

symbol of type (Tl,--.,TA;T) , then f a,...a, ig a term of sort =

If a r o8 are terms of sort Tl,...,T , respectively, and

-1’ A pY
if p is a A-ary predicate symbol of type (Tl""’TA) , then
p a--.a isan atomic formula of L . In particular, &= D is

an atomic formuia of | if a end b are terms of sort T . Foumulas
of | are built up from atomic formulas in the usual way by using
the connectives and quantifiers: if & and B are formulas and X

is & varisble of any sort whatsoever, then =& , BVB , and HxR are

formulas.
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Converting any standard system of logical axioms and ?ules of
deduction f'or one-scrted languages into a cofrésponding system for
a manyfsorted language is a straighﬁforward matter and need not be
detailed here; the only modifications take the form of restrictions
that all variables and function and predicate symbols be of sorts
and types appropriate to one another. A many-sorted theory is speci-
fied by giving a many-sorted languagé and certain nonfogical axioms
(formulas of the language). Again with only the most obvious of
restrictioﬁs, all the-usual syntactiec results sbout theorems and
proofs in first-order theories (for instance, the deduction theorem
and the other results in Chapter 3 of [2]) carry over easily to the

many-sorted case.

:

Extensions by definitions
Let I be a formula of a many-sorted theory T , and assume that

X . T respectively,

) are distinet variables of sorts <

bR 100 N

with the property that no variable other than 5_,...,51 oCCurs

free in D . TForm U from T by adjoining a new A-ary predicate

symbol p of type (Tl,...,TA) together with the (defining) axiom

DX eeeX © > D . Exactly as in [3,874] or [2,84.6], it can be
shown that every formula A of [ has a "translation™ &' in T
with the property that X&' is a theorem of T if and onily if & 1is
a theorem of U . If the new symbol D does not occur in E (that

is, if & ig a formula of T ), then &' is & ; hence [ 1is a

conservative extension of T
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In the analogous situation for function symbols, we have a

theory T , distinct wvariables 5-\"3?5%5XAX) of sorts

1 e Ty sTsT

_ '1"1,.
respectively, and a formula iD[Ei,...,Eﬂ,XJ in which no variable

other than those displayed occcurs free. If we have proofs in T of

the existence condition EXFD[Eia'--sEiaXJ and the unicueness

condition ZD[Ei,...,Ei,zj&ID[Ei,...,Eﬁ,lf]

> X_=T y' , then we

can adjoin t0 T a new function symbol £ of type (Tla---ng;T)

and the (defining) axiom y =_ f x R

x >:EI§1>"':§ﬂ>XJ .

Again, the translation procedure given in [3,§74] for one-sorted
theories can be duplicated in the general case; it follows that the
extension in question is conservative.

By iterating extensions of the two kinds just discussed, we obtain
extensions by definitions of T . Such a theory, being a conservative

extension of T , is consistent if and'only 1f T 1is consistent.

Intenpretations

We shall now define the notion of an {nfenprefation of a many-
sorted theory ( in a many-soried theory T . Here T and i
need not have the same sorts, or even the same number of sorts. First,
an interpretation I associates with every sort T of U a sort I(7)
of T and a unary predicate symbcl UT of T of sort I(r) . With
each A-ary function symbol f of U of type (Tl,..-,Tk5T) , I
associates a A-ary function symbol j& bf T of type (I(Tl)""’I{TA);I{T))’

and similarly for predicate symbols, including the equality symbols

= . (It is not required that (= ). be = . In this respect,
T t'1 I(<)

the notion of interpretation used here generalizes that discussed in

i
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[2 ,64.7], even for one-sorted theories.) For all sorts TooreaTy st
of U , all function symbols f of U of type (Tl,...,T}\;T) R

and all predicate symbols p of U of type (t "T)\) , and ‘with

100

411 variables understood to be of the proper sorts, formulas (3.1)-

(3.5) are required to be theorems of T:

3.1) gx U x 3

3.2) U 8 xE.. 8T U LpXXp-e-% 3
1 2 A

3.3) vx— x(=); %

3.4)  U_x &0 y_l&...&UTAE?\&UTA_XA&%(=Tl)111&...&EA(=TA)IXA —>

£ ey (S0P00Y 0 3

3.5) U x.&U y. &...&8U x &U v, &x. (= ) y- k.. .8x (= )y, —>
Tll Tll TA)\ 'L')\)\lT:LIl )\TAIA

=

(-9-13‘—1' Xy T LI IRRE

Note that (3.1) and (3.2) are automatic if, as is often the case, UT
holds universally for objects of sort I(t) ; also, (3.3)-(3.5) are
automatic whenever equality is interpreted by equality.

With each formuls B of {f there is associated a formula IBI
of T , called the {ntenprefation o4 B by I . First, B; is

the formula of T obtained from B by replacing each function symbol

f by £I , each predicate symbol p by Pr > and each formuia

gx0 by ;;[_g{_(‘UTE&E) , where the varisble x 1is of sort  in U
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{We are being a bit careless here in allowing the same letters to
stand for variables of sort T in U and variables of I(t) in T.)

Then ZBI is U x &...%U0 x, —> B, , where X ,..
o Tl—i TA—ﬁ I =1

SoXy are the

variables free in B (in some agreed-upon order) and are of sorts
respectively (in U). In order that I be an interpre-

tation of U in T , the final requirement is that iBI be a

s T

TqaeeesTy

theorem of T for every nonlogical axiom B of U

The Anterpretation theorem ‘for many-sorted theories asserts that
under the above conditions, the interpretation IBI of every theorem
B of U is a theorem of T . The many-sortedness causes no prob-
lems at all in the proof. 1In fact, the only change necessary from the i
proof given in [2,54.7] owes itself to our lenience.in interpreting
equality: +the interpretations of identity and equality axioms need
not be identity and equality axioms; rather, thgy are precisely (3.3)-
(3.5}, and are therefore provable in T by assumption.

The many-sorted theory (I is {nfenprefable in T if there is an
interpretation of U in some extension by definitions of T . By
the above results, if U is interpretable in T and T dis consistent,

then U 1s consistent.

Equivalence classes
Let T %be a (many-sorted) theory, let &{x] be a formula of T
with one free variable x of sort ¢ and no other free varigbles,

and let ~ ©be a binary predicate symbol of T of sort o . Assume

that (3.6)-{3.10) are theorems of T
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3.6) ax Elx] 3
3.7) | x~y —> K'x}
3.8) Blx] — x~ X 3
3-9) X~y T IR
3.10) . X ~y&y ~z >R~ g

The formula #lx] may be regarded as defining the domain of the equiva-
lence relastion ~° .
IT the theory T contains a reasonable amount of set theory, it

may be possible to define in the traditional way the equivalence classes
modulo the relation ~ , and perhaps even the set of all equivalence
classes. This will not always be the case, however. It is our purpose
now to show that it is always possible to study the equivalence classes
with relstive ease in a theory with one more sort than T .

Let ? be obtained from T by adjoining & new sort g , whose
objects will be regarded as the equivalence classes; a new binary

predicate symbol ¢ of type {U,E) ; and three new nonlogical axioms

(here Greek letters are variables of sort o ) :

3.11) ax(&lx]&yy(yen <— y~x)) ;
3.12) x] —> gulxea) ;
3.13) xeakyep —> o = B .

~

We shall now show that T 1is interpretable in T .
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If 7 is asort in T , let I(t) be t and define

Ux < x= X%. Let I{c) be o , and define U.x <—> E{x]
g
If u is a function or predicate symbol of T , let ur be u .
Finally, let both (=”)I and €I be ~ . We rust verify conditions
o

(3.1)-(3.5) and show that the interpretation by I of every nonlogical

~

gaxiom of T dis a theorem of T .

~

Since UT holds universally if t is not © , and since there

are no function symbols of T vhose types involve o , we need nct

Qz?

check (3.2); (3.1) is also automatic unless T 1s , in which case

~

(3.1) is just (3.6). If T is not o© , then (=T)I is =, 0

the only conditions among (3.3)-(3.5) that require checking are (3.3)
when T is o and {3.5) when p is = or € . If « is o ,
then (3.3) is (3.8). If 'p is = then (3.5) is

Blx, JeBly, Jemlx, Jemly Yo, ~ y b, vy, — (%~ % = 1 ~5) >

which follows from (3.9) and (3.10). If p is e , then (3.5) is
practically the same:

x, =y mbyy = yy8Alx Jekly, lex, =, yibx, vy, — (X, T n Y ¥p)

If B is a formula of T , then B is just B save for a

few embellishments of the form 3 = X certainly ﬁBI < > B 1is a
theorem of T . 1In particular, if B is a nonlogical axiom of T
then EI is a theorem of T . We must show that the same is true

I
if B is one of the new axioms (3.11)-(3.13). First, (3.11) is

Blo) — ax(x = x¢h [xlevy(y = y —> (gro < y~x1)) .

which is a theorem of T since AI[X]_< > &[x] : Just let x Dbe

> Ho(&[olex~ o)) ,

o . Next, (3.12)7 is x = x ——> (Al[gc_]

g
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which is even easier. Finally, (3.13)I ig’

x = xh[a ]J&R[g] —> (x~abx~B

> a~R), which is also a theorenm
of T . The proof that I is an interpretation is complete.

If f is a A-ary function symbol of sort ¢ irn T such that

~ Yok ~y, — CelX o~ i
X~ &Ei Ry E,zl b fy,--y, isa theorem of T ,

one might reasonably expect that £ "induces” a A-ary function symbol
_f of sort g in T . This is indeed the case, as will now be
shown. In fact, a scmevhat more general situation can be handled with-

out much more effort.

Let 1t be {not necessarily distinct) sorts in T

l._‘.- . ,TA,TA‘{':L

Let oI 51! be sorts in T such that for ¢ = 1l,...,At1l ,

1
TlD"° by )\+l
if T is not ¢ , then ' is 1 , and if ¢ is g , then
K K K K
' is either ¢ or g . For ¢ =1,...,3+1 , let ~ be the binary
K K
predicate symbol of sort 1 in T defined as follows: if ' is
© K
T , then ~ is = ¢ 5 if ' is 5 , then &~ is ~ ., For
K K K K ©
K = L,o.. A+l , let ¢  Dbe the binary predicate symbol of type {t ,T;)
K K
in T defined as follows: if <! is ¢ , then ¢ is = ; if
K K T
K

T' is fo] , then ¢ is €
K K

)

Assume that £ is a function symbol of type (Tl""’TA;TA+l

in T such that in T one can prove

&...8x ~

310 vy Yk 8K~ T

— . ~ voeoa -
B S VAL AP CLLR AW

We claim that under this condition

Tz ...z, = — kX, €
3150 LzyeeeZy o By T my(xy € b8 G HE

)

17 & Sa1 Eat
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[r52

is the defining axiom of a function symbol of type

~

] 1.1 Cos
(T:]r_"-.,T)\,T)\"'l) in T

To establish the existence condition for _f , we argue in T

as follows. Given 51""’54 , choose 51,...,EA guch that
Xq €] ByseeraZy €5 Ly (For each ¢ = 1,...,4, if e, is g s
: K

N s . .

Just let X, be EK ; 1f € is € s then use (3.11) to find such

an -EK') Let £ be 5-51"‘51 We wish to show that there is

some E1+l such that §A+l €341 Ei+l , for such a Eﬂ*l will

necessarily satisfy the right side of (3.15). If €341 ig = ,
. T+l

the assertion is trivial; assume therefore that €541 is e . Then

3 1 - ~ ~ - ~ V -
Tye1 is o , T}+1 is ¢ , and "yl is . Certainly
X ™ 51&"'&51 X X, (1f ~. is ~ , then x ~ x  follows

from x e % ., (3.11), (3.9), and (3.10).) Hence (3.1k4) implies that
= Tk x
],

CEyg1 Taeg ey 0 WRICh ds oAy xy ) VX, - BY (3.7), 2lx;,,

so that by (3.12), ) , as desired.

ﬂ)&l(%ﬂ € I+l

We now tackle the uniqueness condition, again arguing in T .

Suppose Eﬁ+l and Ei+1 are such that, for some 51""’51’11""’Xﬁ
we have X €9 51&...&51 €y Ei%£§1"'§i €341 Zy41 and

ol &y ‘e = .y h
¥ € 51& &Xi ?A EA&E-Xi li §1+l 3§+l For « i, A, we have

x € z &7 € %, whence x ~ y (using (3.11) if ~ is ~ ).
=K K K K K X % Kk T K
can cen ; it foll
Let x4 be £_§1 ;% , and let XA+1 be f.li ¥, it follows
from (3.1k) that %41 “ae1 Ly But K41 Eael 5%+1&¥i+1 a1 D
It € is = , then ~ is alsoc = , and so obviously
+ +
A+l ‘Tl+l S Atl .T1+1
= . i i ~ i -~ a
Zo4l T Ej+l Otherwise, €y 15 € s R , an
A+l
z. = W. follows from (3.11) and (3.13). Thus Z = W
A+l Tt A+1 ' A+l Ty A+l
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If every T is g and every Té is o , then ‘f ig the

"induced" function symbol mentioned above; if every 1! is T
: K

i.gl...zal=T 2051...51 is a theorem of T . Observe that

instead of using {3.15), we could equivalently have defined f by

£z ...z =TA+1 Zyg Vzi...vzﬁ(gi €1 Zybe . Bxy ey oz, —

i_gi...gﬂ €341 Eﬂ+l)' The reader may also check that, with notation

as above, if p is a predicate symbol of type (Tl,.--,TA) in T such
that x ~ Ybe.-8x) vy ¥, T (B-Ei"'zﬂ — E»Xi"'zﬁ) is a

theorem of T , then the definitions

D By-eeZy ST 551"‘351(51 € 2% 8%, €y EA&E-Ei"'EA)

and

BB ...B <> YKo ...
R 2y-ee2y VooV (2 g ZoBeodxy € 3 T P X))

i~

of a predicate symbol ﬁ_ of type (T',...,Ti) in T are equivalent.
One significant example of a function symbol defined as above
deserves special mention, namely the "quotient map". Assume that in
an extension by definitions of T there is a constant symbol e of
gsort o such that B[gj is a theorem, and let h Dbe the unary func-
tion symbol of sort ¢ defined by
hx= y<— (Klx]ay = x)v(FRixlty = e) . Replace T by an
extension by definitions if necessary so that e and h are symbols
of T , and form T . Regard h as a function symbol of type
(T1§T2) , where Ty and Ty ére both o 3 let Ti be o , and
let

T} de o . The appropriate form of {3.1k) is

x= y——>hx~hy, which is a theorem of T since KE[h x] always

holds. By the general result above,




3.16) hz =~ 2, <—> ¥x (x =5 B %0 X e EQ)

is a legitimate defining axiom for fhe quotient map symbol E_,

a function symbol of type (U;g) in 7? that we regard as assigning
to each x such that XA[x] its equivalence class E.E.' Indeed,

in this special case we can write E_ rather than E.E.' Observe
that if e 1is as above, then by another appeal to the general result,
the equivalence class E_ can be defined as a constant symbol of

sort & in T . Cleaned up & bit in appearance, the definition

(3.16) then becones

3.17) E(J_:N 7, <

> ([x)ex e z) v (Blxlez =v 8) ,
y _ ~

or equivalently

3.18) X =,z <—>xez, othervise 2z = e .
o =" - -~ g -

th many-sonted theonies?

In elementary logic texts, many-sorted theories are generally
regarded (if regarded at all) as rather unimportant objects. Monk
[5] discusses them under the heading "inessential variations", and
Shoenfield [2] neglects them entirely. At the héart of this point
of view lies a theorem: every many-sorted theory can be effectively
replaced by an equally powerful one-sorted theory. To see how this
works, let us write: T for the many-sorted theory in question and
T* for its one-sorted replacement. The nenlogical symbols of T*
are those of T (but now they are all of one sort) together with

one new unary predicate symbol ST for each sort T of T (the

formula 5 x is to be thought of as saying "x is of sort t")
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There is an obvious procedure for translating formulas of T

# #
into formulas of T ; the nonlogical axioms of T are the trans-
lations of the nonlogical axioms of T together with all formulas

xS x and 8 x &...8%8 x, —> 8 f x....x where f is a
—=Tr= T~ T, A T = —

7 1 3 17" 7=
function symbol of type (Tl""’TA;T) in T . It is not hard
to show that a formula of T is a theorem of T if and only if its
translation into T* is a theorem of T* ; for details, see
[6, Chapter XII]. : '

In light of this replaceability of many—sorted theories by one-
sorted theories, one might be led to believe that the use of many-
sorted theories can accomplish nothing of importance. Such a conclu-
sion is too hasty, howeter:; a closer look at the above discussion of
equivalence relations reveals as much. The many-sorted theory T was
shown to be interpretable in T , so that the consistency of T
implies that of ? . On the other hand, there is no such consistency
proof for the one-sorted theory ?* , for ?* may not be interpretable
in T or in T* at all! We shall see shortly than in certain simple
cases this noninterpretability can actually be proved; the basic
problem is that, even allowing equality to be interpreted by something
other than equality, we would face insurmountable difficulties when
it came time to write Gown one formula defining the interpretation of

both relevant kirnds of equality (equality for §,-objects and equality

for 8.-objects). For consistency proofs, then, many-sorted theories
o

are fundamentally indispensable.




A...S"r_

Of course, having defined ? and proved its interpretability
in T , we could now pass to ?* if we wished. It seems less
confusing, however, to use a few Greek letters than to throw predi-
cate symbols like S and SS' into éll our formulas. Once the
technical preliminaries of this section are taken care of, manipu-
lating objects of various sorts is not difficult at all; indeed, it
could be argued that this is the way mathematicians really think in
the first place. BSurely we all, think of a real number, a vector
space, and a long exact homology sequence as animals of three dif-
ferent species rather than as three sets in Zermelo-Fraenkel set
theory!

One more remark: although in keeping with the traditional concep-
tion of eguivalence classes as collections, the symbol ¢ was used
gbove for the relation between an object and its eguivalence class,
it should be noted that objects of sort E in T are not really
collections of objects of sort ¢ in any intrinsic way. Equivalence
classes have usually been regarded as collections presumably because
those collections coutd be formed, say in ZF , without introducing
new sorts of objects. On the other hand, there is no reason why
equivalence classes should have to be so huge and unwieldy -- and in

the many-sorted approach, they aren't.

A noninterpretability proog
Let T ©be the theory with one sort o , one binary predicate

symbol ~ , axioms asserting that ~ 1is an eguivalence relation,

and the additional axiom
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3.19) qugy{x # yéx~y) .

Form ? as above; T has two sorts, o and g . Consider the
o R ¥ :

one-sorted theory T . In T are two unary predicate symbols

s and 5, , in sddition to =, ~ , and ¢ ; the formulas

3.20) : gt S %

and

.21 S

3 ) gx Sex
. ~ % .

are axiomg of T . There are theorems of T asserting that ~

is an equivalence relation on individuals satisfying S0 and that =

:

ig an equivalence relation on all individuals. Moreover, by (3.19),

¥
{3.11), and (3.13), the following are theorems of T :

3.22) ﬂxay(sgx&scy&x # yex~y) ,

3.23) S0 —> Hx(SGx&vy(SGy > (yea <« y~x)))
p _

3,2h) de&Saa &SEB X c qbx e B —> a =B .

The theory T has a model M  consisting of exactly two elements
a and b with 2% b but a M b 3 we ghall usé M to show that ?*
is not interpretable in T . (Since T 1is one-sorted, T is not
significantly different from T* , 80 essentially the same proof shows
¥

%
that T is not interpretable in T . By adjoining to T an axiom

asserting that there are exactly two individuals, one can convert

this proof to a purely syntactic one that makes no mention of models.)
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The important fact about M is that its two elements aré not dis-
tinguished from each other By any formulas of T 3 that is, a
formula of T with one free variable is true about =a in M if

and only if it is true about b in M . In fact, one can readily
prove, for a general formula D of T that if a certain assignment
of elements of M to the free variables in T makes D true in M
then the oppoéize assignment -- interchanging a and b -- also makes

]

T true in M .

~%
Now suppose I is an interpretation of T in (an extension by

definitions of) T . Then I provides us with a universe UI and

synbols (SG)I . {SE)E s S Ypo and e¢. , all defined by

I I
formulas of T . The interpretations of (3.20) and (3.21), namely
3.25) ﬂx(UIX&(SO)Ix)
and
3.26) Tx(U_x&(S.). %)
ERRON |
are theorems of T . By the above remark about M, it follows

that U , (8 ) » and (5.), all hold universally in M (that is,
o

they hold for both a and b in M ). Combining this with the

-~ ¥

fact that the interpretation of every theorem of T is valid in M

shows that the following are valid in Moo ~1 is an eguivalence

relation; = is an equivalence relation;

I




3.27) meay(x #p yéx ~1¥) s 1
3.28) axyy(y epo <>y ~p x) 3

29} & — g = ' y
3.29 xeraerB u-—IB.

From (3.27) it follows that = M is the game relation as =

I
M

and ~1 the same as ~M : after all, there are only two possible

equivalence relations on a set with two elements. Then (3.28)

implies that y e, o holds universally in M —-- that is,
ae IM a , a eIM b, b EIM a ,and b EIM b are all true. But

this contradicts (3.29), according to which a EIM a and a eIM i)

e
would imply a=b . Thus T is not interpretable in T .




.

PART TWO

PREDICATIVE ANALYSIS
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§4. Anithmetic of Fractions

Classically, when the real numbers are constructed from the
natural numbers, the first step is invariably the construction of
the rational numbers. Our predicative approach begins similarly;
in this section we study the arithmetic of fracitions -- quotients
of natural numbers. For reascns that will become clear when we
discuss the real numbers, however, it is a mistake to think of
these fractions as rational numbers,
All the work in this section can be carried out in Nelson's theory
QO , @ fontioni in any of the theories 0" described in §2. At

the outset, we call the reader's attention to the fact that all function

and predicate symbols defined in this section are bounded.

Fractions
Formally, & fraction is defined to be an ordered triple consisting
of a "sign" (0 for negative, 1 for positive), a "numerator", and
a "denominator™; all fractions are required to be in lowest terms.
Strietly speaking, the first definition to be made is that of ordered

triples:

.1) Def <x. ,x

KX > = <Y LK, XD .
1 > 12772773

2’73

(See (1.14) for the definition of ordered pairs.) The existence

condition for the definition

4.2) Def Ged(a,b) = @ <> ((a#0 vb#0)& d|a & d|b &

ye({cla & c|b —> ¢ <@ )) v (a=0 & b=0 & a=0)
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follows easily from the bounded least number principle, and the

uniqueness condition is obvious. This paves the way for

4.3) Def r is a fraction <—> Tzaib({z=0 vz=1) & b#0 &

(a=0 —> z=1 & b=1) & Ged(a,b) = 1 &r = <z,a,b>) .

Note that =x. = Projl<x

1 1’X2’X3> > X, = Proijroj2<Xl,x2,x3> , and

x3 = Prongroj2<xl,X2,x3> : hence the definitions
L. L) Def Sign r = Proj, T,

4.5) Def Numer r = Proijroj2 T,
h.6) Def Denom r = ProjeProj2 o

¢

To convert an arbitrary triple <0,a,b> or <l,a,b> into a
fraction, we must prove that it has a unique expression in lowest

terms:

L.7) (2=0 vz=1) & a#0 & b#0

Tr(r is a fraction & Sign r = z & a-Denom r = b.Numer r).

Proof. Existence of r is easy: let r be

<z,0t(Ged(a,b),a) ,Qt{Ged(a,b),b)> . To prove uniqueness, suppose

<z,c,d> and <z,c',d'> both satisfy the requirements for r . Then
a.d = b-c and a-d' =b-c' , so a-d-b'ec’ = b-cra-d' and hence
d.c' = c+d' . It suffices therefore to prove ¢ = c¢' ; we show that

both equal Ged(ec,e') . If c = ch(c,c‘)-cl and ¢! = ch(c,c')-ci

with, say, ¢, > 1 , then there is a prime p dividing ec, . (For

1
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instance, let T be the smallest number larger than 1 ' that
divides cy 3 this exists by (BLNP).) UNow d-ci = cl-d' , 80
p]d—ci . -Certainly p,fci , for otherwise Ged(c,c')-p would be

a common divisor of ¢ and c¢' ; therefore p|d . (The skeptical
reader may see [1, (9.37)] for a proof.) But plc & pld contradicts

the fact that <z,c,d> is a fraction. Thus c = Ged(c,c'), and

likewise c¢' = Ged(e,c') . H

4,8) Def Reduc s = r <

> r is & fraction & mziazb (s = <z,a,b> &

(z=0v 2=1) & b#0 &((a=0 & r = <1,0,1>) V

il

(a#0 & 2=Sign r & a‘Denom r = b-Numer r))) , otherwise r =0 .

The uniqueness condition for (L.8) follows from (4.7}, which also
guarantees that if s is <0,a,b> or <l,a,b> with b#0 , then

Reduc & really is a fraction that represents s 1in lowest terms.

b,9) Def n = <1l,n,1> .

~

The fraction n 1is just the fraction representing the number n .
The reader armed with (1.14) may be amused to calculate that ©O = 11 .

The circumflex will consistently signal arithmetical operations

and relations involving fractions.

4.10) Def r<s <—> r and s are fractions &

((Sign r = Sign s = 1 & Numer r-Denom s < Numer s-Denom r) Vv

0 & Sign s =1) v

@

i

i

It

Sign s = 0 & Numer s - Denom r < Numer r-Denom s)) .

(Sign r =




LT

~ ~

L,11) Def r € 5 < > r and s are fractions & (r<s v r = g)

The order axioms are now arithmetical triviselities; hardest

is (4.15), which uses (L.7).

4.12) Aar<r. |

h.13) ~(r<stgs<r) .|

h.1k) r<sks<t-— ret . |

4.15) r and s are fractions >I‘;SVI‘:SV5;I'.”

-~ -~ ~

We take the symbols > and > as abbreviations: r > s for

A ~ ~

s<r ,and r>s for 's<rvr.

Recall that there is a bounded function symbol Bd such that

if a is a set, then Bd a is the largest number in a according

to the ordering < . We next define a bounded function symbol Max

such that if a 1is a set all of whose elements are fractions, then

Max a 1is the largest fraction in a according to the ordering < .

k,16) Def Max a = r_ <——> a is a set of fractions & r. ¢ a &

0 0

A

> ' < I

otherwise r_ =0 .

VI‘(I‘ea 0)5 O

Uniqueness is clear from (%.13). That Max a is what it is supposed

t0o be is the content of

4.17) a is a set of fractions & a # O > Max a ¢ a &

A A

> r < Max a) .

yr (re a
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Proof. What must be shown is that there is some rg satisfying

r e ak ¥irea

0 > r 5-r0) . By the bounded replacement principle,

there is a set b consisting of all denominators of elements of a .
{Actuslly, bounded replacement gives a function mapping each element

of a +to its denominator; let b be the range of that function.) Let
w be the product of all elements of b {that is,

w= (TEnum b)(In Enum b)) , and, using bounded séparation and bounded

replacement, form the sets ¢y T {0t (Denom r,w-Numer r}: re ak

Sign r = 0} and e, = {Qt (Denom r,w-Numer r}: r ¢ a & Sign r = 1} .

Since a 1is nonempty by assumption, either qy or c:L i nonempby.

I Cl is nonempty, let x be the largest element of cl . Then the

fraction r. such that, x = Qt (Denom r

0 ,weNumer ro) is precisely

Q

Reduc <l,x,w> , and this r is easily seen to be the desired largest

0

fraction in a . If cy is empty, then all the fractions in a are

negative; let x be the smallest element of ¢ and let

O L

r, =Redue<0,x,w> . (

4.18) Def -r = s <—— r 1is a fraction & ({r=0%s=0)v

(r #0 & s = <1-Sign r,Numer r,Dencm r>)) , otherwise s =0 .

1
n

4.19) Def r_ +r R

1°2

rl and r2 are fractions &

ﬂzlﬂalablﬂzeaaeﬁbz(rl = <258y ,b> & T, = <Z 585 5b5> &

((Zl = Z, & s = Reduc-<zl,al-b2+az-bl,bl-b2>) v
(zl =0&z,=18&-r <, & s = Reduc <l,a2'bl-al-b2,bl-b2>) \




(zl =0 & Z, =1 & r, < -r; & s = Reduc <0, 28y * b2 a,° bl bl b2>) v
(Zl =1 & ZE =0 & ry < =T, & s = Reduc <0, s85 " bl a.:L b2 bl b2>) v
(Zl =l&z,=0% -ry < T, & 5 = Reduc <l,8,-b,~8,b,,b b2>) v

(r:L =-r, & s = 6))) .

otherwise s = 0 ,

The following propositions are routine.

4.20) r, + r, =1, ¥ r, - |

.21} r + (rg;rB) = (rllrg) + ry - I
. L.22) r is a fraction ——s 140 = T . I

L.23) r is a fraction —s r;(:r} =0 N

~ PN

Let us agree to write r-s as an abbreviation for r+(-s) .

~

L.2L4)  Def rjtry, =8 <> 1o and r, are fractions &
‘ ((sign r, = Sign r, & s = Reduc <1 ,Numer rl-Numer Ths Denom,rl'Denom r2>)v
N)%
(sign ry # Sign r, & s = Reduc <0,Numer r,+Numer r,, Denom r,-Denom r2>)),

otherwise s =0 .,

L.25) Def Recip r = 8 <—— r is a fraction & r # 0 &

= <Bign r,Denom r,Numer r> , otherwise s = 0 .

~

L. 26} Def r1/r2 =71 * Recipr

2

h.27) r. - r._ =T_ -+ T . “
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A ~ ~ ~ | I

I, 28) rl . (rg-rB} = (rl'rg) * r3 .

o~

4.29) _ r 1is a fraction — r.1 =71 . ||

4.30) r dis a fraction & r # 0 —> r+Recip r = 1 . I

L. 31) r,oc (r2+r3) =7 T, * riTs - ”
L, 32) r, 1is a fraction & r, < T, > T tr, < orptr, |
L.33) r, < T, & 0 < Ty => Ty T, < TyeTa |

Propositions (k.12)-{4.15), (4.20)=(4.23) and (4.27)~(Lk.33) are

of course the standard ordered field axioms for fractions, so every
elementary theorem ab0u£ ordered fields is a theorem about fractions.
(Example: =ir (r is a fraction & ror = :i).}

Two more useful functions te add tc our supply are the absclute

value and greatest integer functions.

4.34) Def |r| = s <—— r is a fraction & s = <1,Numer r,Denon r> ,

otherwise s = 0 .

]
O
]
a3

1]
o

—

4.35) r is a fraction — |r| ;_6 & (|;|

1
-

4.36) [rl-r2[ 1] . |r2[ -l

4.37) EXNIRE

4.38) r<0—> dn(n< Numer r & -n < r & r < -(n-1) )

Proof. All sufficiently large n satisfy -n < r . Use (BLNP)

to find the smallest such n . ” '
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4.39) r>0 > g!n (n < Numer r & n < r & r < (n+l) Y.
L.40) Def [r] = 5 < > r is a fraction &
({r<0&an (n< Numer z&n < r & r < =-(nsl) & s =-n)) Vv

~ A -~ ~ ~

(r>0&gn (n< Numer r& n < r & T < (n+l) & s = n})) ,

otherwise s = 0 .

Observe that if r is a fraction, then so is [r] . If r is
positive and we want n rather than n , We £ake Numer [r] .

As remarked earlier, all of the symbols we have defined are
bounded. It will be helpful to record two of the bounds explicitly;

the proofs are obvious but cumbersome.

]

b

L.h1) r)tr, ST T, I

h.42) r. o~ r_ < T, -T, .|

Polynomiols
We wish to study polynomials whose coefficients are fractions.

Such a polynomial can be identified with its seguence of coefficlents;

o>

we require that the last (highest power) coefficient be different from

4.43) Def f is a polynomial <~-= f 1is a seguence of fractions &

£(In £) # 0 .

The fact that the domain of a sequence is {1,...,n} rather than
{0,...,n} presents a minor inconvenience: we regard f(1) as the

constant term, f(2) as the first-power coefficient, and so on. The

zero polynomial is the empty sequence O (not 0) .
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L, kL) Def Deg £ = n <—— f 1is a polynomial & Ln f = n+l , otherwise

If u 1is any sequence of fractions, we can obtain a polynomial by

truncating u -- that is, by removing a string of 0's from the end.

L.k5) Def Truncate u = f < u is a sequence of fractions &

in (1 <n<Inué&uln) # 0 & vi (n < i< Inu-—— u(i) =0) &

f = ull,n]) , otherwise f =10 .
L.46) u 1is a sequence of fractions —> Truncate u is a polynomial.

Prood. By (BLNP) there is an n such that
minn vi (n < i< Inu—> u{i) = 0) ; then Truncate u is wul[l,n] .

This is either the empty sequence or a sequence whose last term u(n)

~

is not O . H

Before showing how to evaluate a polynomial at a given fraction,

we require some definitions.

4L.47) Def u is a power sequence of r <=— r is a fraction &

~

u is a sequence & u{l) = 1 & ¥i {1 <1< Inu-—s u(i+tl) = u(i)-r) .

If u is a power sequence of r , then u{i) is intended to represent

. i- o
the fraction r 1 .+ Of course this is not a +-power but a *-power;

the notation r A 1 , however, will be sedulously avoided.

L.48) r is a fraction —= gu (u is a pover sequence of r &

In u = Log n & Sup u < Explog (r,n)) .




~T1-

Preo4. Bounded induction on n . The bound on Sup u is

a consequence of (h4.k2). |

Recall from §1 that a bound on a sequence u in terms of a number n

requires a bound on In u that is logarithmic in n .
4L.49) u and v are power sequences of r & Ilnu=Inv—> u=v.
Proof. Let k be Ln u , and use bounded induction on k . |]

4.50) Def Powerseq {r,n) = u <—= u 1is a power sequence of r &

In uw=1I1ogn , otherwise u=1.

{We choose u =1 rather than u = 0 in the "otherwise" clause in

order that Powerseq (r.,n) not be a sequence at all if r is not s
fraction.)

We shall have occasion to make several definitions much like
(L4.50) for which the appropriate conditions and bounds have similar
proofs by bounded induction. In each such case, the preliminary
definition corresponding to (4.47) and the theorems analogous to (4.48)
and {L4.L49) will be cmitted as long as they are straightforwerd. For
example, here is the definition of the termwise product of two sequences

of fractions:

4.51) Def Mult (u ,ug) = v <—> 1 and v are sequences of

1 1° Yoo

fractions & In ul = In u2 =In v &

vi (1< i< In u, —> v(i) = u (i) p uz(i)) , otherwise v =1,

1

{(The bound on Sup v is Sup u, -Sup u, , again by (4.42).)
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It is sometimes useful to add sequences of fractions termwise
even if they are of different lengths; we have in mind, of course,

the addition of polynomials.

k.52) - Def Add (ul,ue) =y <—>u, ,u. ,and v are sequences of

1 2
fractions & Ln v = Max (In u , In u2) &
vi (1 <1< Im w & i < In u, —> v(i} = ul(l) + ug(l)) &
vi {In u, < i< In u, — y(i) = ug(i)) & '
vi {in u, < i< In u, —> v(i) = ul(i)) . otherwise v = 1 .

h,53) Def Zu = v < > 131 and v are seguences of fractions &

Inu=Inv&v(l) =u(l) &v¥i {1 <i<Inu—>

v{i+l) = v(i) " u(i+l)) , otherwise v =1 .

Just as Eu is the sequence of partial +-sums of the numbers in the

sequence u , Zu is the sequence of partial +-sums of the fractions

~

in u . The total sum is {Zu)(Ln u) . Likewise:

4.54) Def Hu=v <—>u and v are sequences of fractions &
Inu=Inv&v(l) =u{l) 8vi (1 <i<Inu—>

v(i+l) = v(i) » u(i+l)) , otherwise v =1 .

The preceding definitions provide all the necessary tools for
evaluating polynomiels. Recall that In f < Log £ by (1.18); there-

fore (Powerseq (r,f)) [1,In f] is the sequence whose terms are

1,r,r2,...,rDeg £ . Then Mult (f,(Powerseq (r,f))[1,In f]) is the
~ ~ Deg T ' X
sequence f(1),f(2)r,...,f(In )*r , and the desired value,

to be called Polyvalue (f,r) , is the sum of all the térms in Lhis

sequence.
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4.55) Def Polyvalseq (f,r) = u <

'+ is a fraction & u =} (Mult(f,(Powerseq (r,f))[1,In 1)),

> £ 1is a sequence of fractions &

otherwise u =1

~

4.56) Def Polyvalue {f,r) = s <— (f =0 & r is a fraction & s = Q) v
{(f is =& sequence of fractions & £ # 0 & r -is a fraction &

s = (Polyvalseq (f,r))(ILn f)) , otherwise s =0
No matter how silly it may appear, the following requires proof.
4.57) Polyvalue {f,r) = Polyvalue (Truncate f,r)

Proof. The idea is clear. We may assume that £ # 0 is a

sequence of fractions and that r is a fraction. As in (L.L6), let

~

minn ¥i (n < i < ILn £f—> £(i) = 0) , so that Truncate f = f[1,n]
If 1<3i<mn, then
(Powerseq {r,f))(i) = (Powerseq (r,Truncate £))(i) ,
and therefore

(Mult (f,{(Powerseq (r,f))[1,In £])}(3)}

= (Mult(Truncate f,(Powerseg{r,Truncate f)}[1,Ln{Truncate £)1))(i)
By bounded induction it follows that for such 1 ,
(Polyvalseq (f,r))(i) = (Polyvalseq (Truncate f,r)){i)

But n < i< Inf —> (Mult(f,(Poverseq (r,£))[1,In £1))(i) = 0 ,

so if n < i< In f , then {Polyvalseq (f,r)}(i) = (Polyvalseq (£,r))(n)

(ancther bounded induction). Imn partieular,




iy STV

I

Polyvalue (f,r) (Polyvalseq (f,r))(ILn f)

i

(Polyvalseq (f,r))(n)

(Polyvalseq (Truncate f,r))}(n)

Polyvalue (Truncate f,r) ,

since Ln{Truncate f) =n . H

Hereafter, obvious and tedious arguments such as the above will be
condensed drastically if not omitted.

Our next main object is a theorem (4.72) to the effect that if
the coefficients of two polynomials f and g are clese together,
and if r 1is close to s , then Polyvalue {(f,r) is close %o
Polyvalue (g,s) —— a kind of continuity result, in a sense to be made

precise in §5§5~6. The place to start, as usual, is with definitions.

4.58) Def Negseq u=v <—> u and v are sequences of fractions &

Inu=Inv&Vi{l<i<Inu—> v(i)-= :u(i)), otherwise

4.59) Def Subt (u,,u.) = Add (ul,Negseq u2) .

1°72

4,60) f and g are seguences of fractions & r is a fraction >

Polyvalue (Add (f,g),r) = Polyvalue (f,r) + Polyvalue (g,r) .
Proo§. By bounded induction on k = Max (In f,In g) . ||

h.61) ¥ is a sequence of fractions & r 1is a fraction —>

Polyvalue (Negseq f,r) = —Polyvalue (f,r) . ||
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L.62) f and g are sequences of fractions & r is a fraction >

Polyvalue {Subt (f,g),r) = Polyvalue (f,r) -~ Polyvalue (g,r). I

The next proposition says that

1

0 0 .
+a r+.. .+ - + " = -1) + -8 )+, . .+

(al a,r a T ) (al a s+ a2 .1° ) al(l 1) a2(r s)

an+l(rn-sn) . As expected, the proof is by bounded induction on Im f.

4.63) f is a sequence of fractions and r and s are fractions —=

~

Polyvalue (f,r) - Polyvalue (f,s)

= (i Mult{f,Subt({Powerseq(r,f))[1,ln ] frowerseq{s,f))[1,Inf])))(In 3.l

4.64) Def Reverse u = v <—> u and v are sequences & Inu = In v &

:

vi{l<i<Inu > v(i}) = u (Ln u+l-i)) , otherwise v =1

Reverse u is the sequence with the same terms as u but in the

reverse order. Another sequence that will prove useful is the one with

n-1 n-2
r -

n-3 2
terms v . 8,T -

n-2 n-1
CS »

IS 4 s , for which we use the name

Telseq in light of the "telescoping" property {L.67):

n n

reg = (I'—S)(rn_]'ﬂ'n“2

s+...+8

n—1)

> r and s are fractions &

4.65) Def Telseq (r,s,f) = u <
£ is a sequence & u = Mult{Reverse((Powerseq(r,f))[1,In f-1]),

(Powerseq(s,f}){1,In £-11}, otherwise u =1

4.66) r and s are fractions & f 1s a sequence & 1 <i<In f-1—>

A

(Telseq {(r,s,f))(i) = (Powerseq (r,f))(In f-i) - (Powerseq (s,f£})(i) .

Proof. By (4.65) and the definitions of Mult and Reverse. I
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4.6T) r and s are fractions & f is a sequence & In f > 1 —>

(Powerseq (r,f)){In f-1) Z (Powerseq (s,f))(Ln £-1)

A

=.(r:s) . (i Telseq {r,s,f))(In £-1) .

Proof. Prove by bounded induction on i that if 1 < i < Im £-1 ,

then (r:S) . (i Telseq {(r,s,f))(i)
= (Powerseq (r,f))(Lan ) - 8 . ({Telseq (r,s,f))(i)) . For i = In f-1

this is the desired result in light of (L.66). ||

Another definition, and a generalized triangle inequality:

4. 68) Def Absset u = g < > 1 is a sequence of fractions & a is

aset & Vr (re a<—> @s(s e Ran u & r = |s|)}), otherwise

]

a=1.

A A

4.69) u is a sequence of fractions —— F(Iu) (In w)| < (1a ) -

~

Max (Absset u)

Proog. By (4.37), (4.32), (4.31), and bounded induction, if

l<igcInu, then [(Ju)(i)| < i + Max (Absset u) . ||
We prove now that
|(a,+a,r+...+5 +1rn) ~ (b.+b_r+...+b

rn)|
i 2 n 1 2 n+l

< (n+l) + Max {laiwbi|} . (|r[n+1? .

and that




_..‘TT_
n n
+ -
l(bl b,rd. b ) (bl+b28+...+bn+l§ )|

i‘(n+l)2 . Max'{|bi|} © | r-s] - (|r{n+|s|n+l) .
~

These two results are then easily combined via the triangle inequality
to give {(h.72).

4.70) f and g are sequences of fractions & In £ =1In g &

is a fraction —— |Polyvalue (f,r) - Polyvalue {(g.1)]

I
< (In f) Max (Absset(Subt(f,g)))'((Powerseq(|r|,f))(Ln f)+i) .
Proof. By (4.62), the left side is |Polyvalue (Subt(f,g),r)].

By {L.69) and the definition of Polyvalue, this is

~

S (o) C Max (Abssét(Mult(Subs(f,g),(Powersea(r,t))[1,In £1)))

But every term in the sequence Mult{Subt(f,g),(Powerseq(r,f))[1,In f])

is, in absolute value,

E_M;x(Absset(Subt(f,g))) : Méx(Absset((Powerseq(r,f))[1,Ln £1))

and the latter factor is either (Powerseq(|r|,f))(In £) or 1,

depending on whether |rl > 1 or ]rl 2 1 . H

h.71) g is a sequence of fractions & r and s are fractions —>

A
| Polyvalue (g,r) - Polyvalue (g,8)]

~

< (Ing) -+ (In g) - Max (Absset g) * |r-s]

((Powerseq ({r|,z))(In g) % (Poverseq (|s|,g))(In g) + 1)

A o~

Proof. By {(4.63) and (14.69), the left side is

~ A

(Im g) - Max(Absset(Mult(g,

i

Subt { ( Powersea(r,g))[1,In g],(Powerseq(s,g))[1,In gl}))) .
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~

This Max is certainly < the product of Max (Absset g) with

Mo (Absset(Subt( (Powerseq (r,g))[1,In gl, (Powersea{s,g))[1,In g1))) .
Suppose 1 < i < In g . Then the ith term of the sequé?ce Subt{...,...)
appearing above is (Powerseq (r,g))(i) - {(Powerseq (s,g}){i) , which

by the telescoping property eguals (r:s) . (i Telseq (r,s,gl[1,i]))(i-1) .
By (L4.69) again and (4.66), this last quantity is, in absolute value,

~

at most |r-s| times (In g) times

| (Powerseq (r,g))(i~j) * (Powerseq (s,g))(3)] for some J with
1 5_j < i-1 , and this last factor ecan be ﬁo larger than
(Powerseq (|r|,g))(Ln g) + (Powerseq (|s|,g)){In g) + 1 . Thus

Max (Absset(Subt(...,...))})

g_(Ln g)htlr:slt((Powerseq(|r|,g))(Ln g)i(Powerseq(ls|,g))(Ln g);i) .

as needed to complete the proof of (h.T1). “

L.72) f and g are sequences of fractions & In £ = In g & r and s

are fractions — |Polyvalue (f,r) - Polyvalue (g,s)|

~ A ~

3_((Ln f)  + Max (Absset(Subt(f,g)))?((Powerseq(|r|,f))(Ln f);i))

A ~

+ ((Im £) - (Tn ) - Mex (Absset g) - [r-s|

~ ~

((Powerseq(|r| ,£))(Ln £) + (Powersea(]s|,£))(In 1) + 1)) .|

The final result of this section is that beyond some point the
values of a polynomial do not change sign. It is convenient to

consider monic polyncmials first.

4,73) ©Def f is monic <—— f 1is a polynomial & f(In f) =1 .

4,74) Def Fixsign f = r «— f is monic & r = Max (Absset f)-(Deg f) +1 ,

otherwise r =0 .
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~ Ao~

b.75) f is monic & r > Fixsign f ——> Polyvalue (f,r) > .

Proof. Let n be Ln f , so Deg f = n-1 . If rs Fixsign f,
then r > 1 and also r > [f(i)] - (n-1) for every i with
1 <i<n . The sequence of fractions (Powerseq {r,f))[1l,n] is

nondecreasing, so if 1 < i < n , then
|(Powerseq(r,f))(i)'f(i)l'(n—l) <(Powerseq(r,f)){i)r < {Powerseq(r,f))(n) .

Since f 1is monic, this ineguality can be rewritten as follows:

if 1 <1i<n , then

| (Mu1t (f,(Powerseq(r,))[1,0]))(i)| - (n-1)

< (Mult (f,(Powerseq(r,f))[1,n]))(n) ;

:

that is, the nth term of the sequence Mult(f,{Powerseq(r,f))[1,n])
is larger than (n-1) times the absolute value of any one of the
other n-1 terms. From (h.69) it follows that the nth term is
greater than the absolute value of the sum of all the other terms,
and therefore that the sum of all n terms is positive. This sum is

precisely Polyvalue (f,r} . ||

A A

4.,76) f is monic & r < -Fixsign f —

A A

(2| Deg £ —> Polyvalue (f,r) > 0) & (24’Deg f —= Polyvalue (f,r) < 0}.

Proof. The inequalities in the proof of (L.75) remain true in
absolute value, but now the sequénce (Powerseq(r,f))[1,n] is
alternating in sign. The sign of Polyvalue (f,r) is the same as
the sign of the highest term, which depends on whether n is odd or

even. ||

4
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Generalizing (4.75) and (4.76) to the case of non-monic

polynomials is easy once we have the following definition:

4.77) Def Normalize f = g <—> f and g are polynomiels & In ¥ =1In g &

> g(1) = £(i)/f(In T)), otherwise g=1.

Vi (L<i<Inf

.

4.78) f is a polynomial & f # 0 —> Normalize £ 1s monic &
vr (r is a fraction —=> Polyvalue (Normalize f,r) =

Polyvalue (f,r)/}(Ln £y .l

In particular, (4.78) says that Polyvalue (Normalize f,r) has the
same sign as Polyvalue (f,r) is f{Ln f) dis positive and the opposite
sign if f(In f£) is negative. Hence there are four cases, depending

on the sign of f(In f) and the parity of Deg f .

4.79) f is a polynomial & £(In f) > 0 & 2|Deg f —>

{r

Fixsign (Normalize f) > Polyvalue {f,r) > 0) &

~

~Fixsign (Normalize f)

In > fv >

> Polyvalue (f,r} > 0) . “

4.80) f is a polynomial & f(In £) > 0 & 2 fDeg f >

(r > Fixsign (Normalize f) —> Polyvalue (f,r) > 0) &

(r < -Fixsign (Normalize f) —> Polyvalue (£,r) <0) . |
4.81) f is a polynomial & f(In f) < O & 2|Deg f >

> Polyvalue (f,r) < 0) &

(r > Fixsign (Normalize f)

A

(r < -Fixsign (Normalize f} —> Polyvalue (f,r) <0) . |
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>,

. 4.82) f 4is a polynomial & f(In f) < 0 & 24 Deg T

; L (r > Fixsign (Normalize f} —> Polyvalue (f,r) < 0 &
- (r < -Fixsign (Normelize f) —> Polyvalue (f,r) > 0) . ||
-

x :4;‘;:
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§5. A Theory with Reaf Numbeis

The primary objective of this secgion is the introduction Qf
real numbers into our predicative'theory. Using an observation of
Nelson's about the unprovabiiity of exponentiability, we first
adjoin an axiom asserting the existence of "infinite" (nonexponen-
tiable) numbers. Once we have infinite numbers, we have infinite
fractions, infinitesimals, and a relation of infinite closeness;
using the results of §3, we introduce a two-sorted theory in which
the individuals of the second sort are the eguivalence classes of
finite fractions modulc this relation. These eguivalence classes are
our real numbers, and we show that they satisfy the axioms for real

]

closed fields.

Nonexponentiabfe numbens
As Nelson points out in [1], one cannot prove in Qo the formula
vke (k) asserting that every nunmber is exponentiable; the same is true
of the stronger theories Qu . One preof of this fact is sufficiently
enlightening to merit a quiek sketch here. |
Let T ©Te a consistent extension of Qo . Let ¢ be a new unary

predicate symbol, and consider the formuls
Fin) ${0) & (¢{x} —> ¢(8x)) .

in the theory T[{(Fin}] in which (Fin) has been adjoined as a new
axiom, we can certainly prove ¢{0),$(1),9(2),..., but we cannoct

immedistely coneclude vyx¢(x) since no induction scheme is applicable
: -

to formulas involving ¢ . Let a be s variable-free term of T .
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The intuition of many mathematicians is that a represents some
number p and that there should be a proof of ¢{a) in at most »p
steps. In [1,§18], however, Nelson cites an example of Simon Kﬁchen
to show that this intuition is wrong: there exist variable-free terms
a such that ¢(a) is not a theorem of T[(Fin)] at all. Nelson
proceeds to prove a metatheorem [1,§18, Assertion 1] to the effect
that if there 44 a probf in T{{Fin)] of ¢(a) , and if no formula

in that proof contains more than 1 quantifiers, then this proof
must have at feast a certain number (depending on a and 7 ) of
formulas in it. As a consequence [1,§18, Assertion 2}, no inductive
formula of T[(Fin)] is stronger than ¢(x) and respects!exponen-
tiation: if there were ssuch a formula, one could use it to give short
proofs of ¢(a) .

Now let T be Q“ , and suppose vVke(k) is a theorem of T .
Consider T[{Fin)] . Write ¢l(x),¢2(x),... for the formulas
ml[x],me[x],... (see §§1-2), where [{x] is ¢(x). Since ¢ is
“inductive, it follows from Metatheorem Gu that ¢u+h is stronger

# .

than ¢ , 15 hereditary, and respects 0 , S , + , « , # , #l,..., u

pth

By Metatheorem Hu . ¢ respects every bounded function symbol

of Qu ; moreover, if & is a nonlogical axiom of QE (that is, a
nonlogical axiom of QP cther then the defining axiom of an unbounded

p+h

+
symbol), then z? is a theorem of T[(Fin)] . Hence o" 4

defines
an interpretation of Q% in T[{(Fin)] .
The theorem Vke(k) of T implies that for every x and k

there is a sequence u of length k such that u{l) = x and

¥i (1< i< k-—> u(i+tl) = u(i)'x) -~ a sequence whose, terms are the
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first k powers of x . The existence of such a sequence is there-

fore a thecrem of Q% , since T is just an extension of definitions

c +4
of ,Qi . By the interpretation theorem, the relativization by ¢u

of this theorem is a theorem of T[(Fin)l . Arguing in T[{Fin)} ,

u+]+

then, if x and k satisfy ¢ , then so deces the sequence u ,

+
and because ¢u h is hereditary, so does the last term of that

4
sequence -- namely xAn . Thus ¢“ A is an inductive formula of

T[(Fin)] +that is stronger than ¢ and respects exponentiation,

contrary to the aforementioned result of [1].

Aithmetic with Linginitesimals

To Qu adjoin a new constant symbol N and the axiom

]

5.1) Ax=e(N) ,

forming the theory au . 'This theory is consistent by the result
just noted. Observe that since N is not exponentiable, Log N is
exponentisble exactly once, Log Log N exactly twice, and so on; hence

if we make the definitions

5.2) Def U, = Setlog N ,

Def U, = Setlog {Log ¥) ,

Def U3 = Setlog (Log Log N} ,
it follows that for v = 1,2,... we have Ev(x) > x ¢ U and
xe U, —> Eu-l(x) (eo means e ) .
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Fix v with 1< v < p , so that by §2, €, respeéts

0,8 ,+, " ,and # in Q" (hence in EP ) .

5.3 Def r is limited <— r is a fraction & ev(Numer (r]).

ig a fraction & = (r is limited).

5.4 Def r is unlimited «<—— r

The limited fractions are the ones we think of as "finite". A

Vi
few obvious theorems:

5.5) |r| g_!sl & s is limited — r is limited.

Proof. Since e is hereditary, it suffices to observe that

it |7 é_!s| ., then Numer [r] < Numer [s] . |

r is a fraction —= (r is limited <— Hn(ev(n) & |r| < n)) .

5.6)

Proof. If r is limited, let n be Numer [r]+l . Conversely,

Numer [n] =n , so if gv(n) & ]rl <n , then r is limited by (5.5). ||

5.7) r is a fraction ——> (r is unlimited <— Hn(ﬂe“(n) gn< |r]).

is unlimited, let n be Numer [r]-1 .

|

Prood. If r
The converse again follows from (5.5).

~

is limited <-—s —r is limited. ”

5.8) «r

5.9) r is limited & s is limited —> r+s is limited. ||

5.10) r is limited & s is limited —— r-s is limited. I

The next definition is that of infinitesimal fractions.




—86~

5.11) Def r is infinitesimal <—— r 1is a fraction &

(r = 0 v Recip r is unlimited).

5.12) ]r[

fA

!s[ & s is infinitesimal ——> r is infinitesimal.

" Proof. If x| E_ls] , then |Recip s| é IRecip r| . Apply (5.5). ||

~

> -r is infinitesimal. |

5.13) r is infinitesimal

»

5.14) r is infinitesimal & s is infinitesimal -——> r+s is infinitesimal.

\

Proog. If r+s # 0 , then Recip (r+s) is, in absolute valiue,
at least half the smaller of Recip r and Recip s , and is therefore

unlimited by (5.10) and the fact that 2 is limited. ||

~

5.15) r is limited & & is infinitesimai —= r-3 18 infinitesimal.

Proof. Since r is limited and Recip s is unlimited, it
follows from Recip s = r-Recip {(r's) that BRecip (r-s) must be
unlimited. H

5.16) r is a fraction & «(r is infinitesimal) & s is unlimited —=>

~

r-s is unlimited.
Proof. Take reciprocals and apply (5.15). |

Now the relation "infinitely close":

~

5.17) Def r~s —> r and s are fractions & r-s is infinitesimal.

~

> r~0 . “

5.18) r is infinitesimal <
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5.19) r is a fraction ——> r~r . I
5.20) r~s—> s~y . |
5.21) r~s & s~t —> reat |
Proo§. By (5.14). [

5.22) re~s8 —b v~ -5 . |

A A

5.23) ry~ sy & r,~s, = r1+r2~ Sl+32 .

Proog. By (5.1h). ||

5.24) r) and r, are limited & )~ s % r,~s, —> Ty~ 8 t8,

A~ - ~

Proof. The difference rytT, - 808,

~ ~ ~ A ~

ry+(r,-s,) + 8,-(ry~s;) , which is infinitesimal by (5.15) and (5.14).]

is equal to

5.25) r~s &= (r is infinitesimal) —s Recip r ~Recip s .
Proof. The difference Recip r - Recip s can be written as

(s-r)+Recip r+Recip s . This is the product of an infinitesimal and

two limited fractions, and is therefore infinitesimal. ||

5.26) r ~s & r,~ s, & r, is limited & ﬂ(r2 is infinitesimal) —>

rl/rgmsl/s2 .

Proog. By (5.24) and (5.25). ||
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Our work in 5§k is sufficient to show that polynomials behave
nicely as regards the relation ~ , For starters, we note that
"the sum of finitely many infinitesimals is infinitesimal":

5.27) u 1is a sequence of fractions & Ev(Ln u) & yi{l < i < Inu —>

~

s infinitesimal) —> (Zu)(Ln u} is infinitesimal.

[N

uli)

Prood. By (4.69), l(zu)(Ln u)] < (Ln u) - Max (Absset u).
The first factor on the right side is limited, and the second is

infinitesimal. || .

5.28) u is & sequence of fractions & Sv(Ln u) & Vi (1 <i<Inu—>

u(i) is limited) —> (§u)(In u) is limited. ||

]

5.20) r is limited & Ev(n) & u = Powerseq {(r,n) > u{Log n) is

limited.

Prood. By (5.6), |r[ <m for some m with Ev(m) . By bounded

induction on n , |(Powerseg (r,n))(log n)| < (Explog (m,n)) .

But Ev(m) & Ev(n) implies gv(Explog (m,n)) . H

In conjunction with the above procof, recall that Explog 1is a bounded
function symbol of QO ; since €, respects 0 , 8 ,+ , * , and # ,
it respects every such funcétion symbol by Metatheorem E. In fact,

the bound on Explog [1,§19] does involve # ; hence the restriction
that v be strictly smaller than p 1is really necessary. Note also
that the notions limited, infinitesimal, and ~ are not bounded, so

we may never use induction directly on any formulas involving these

symbols.
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5.30) f and g are sequences of fractions & Im £ = In g &

e .. (Inf)& Vi (l<is<Inf—> f(i) is limited &

v+l(

£f(i) ~g(i)) & r is limited & r~s —>

Polyvalue (f,r) ~Polyvalue (g,5) .

Proof. By (4.72), |Polyvalue (f,r) - Polyvalue (g,s)|

S ((1n ) - Max (Absset(Subt(f,g))) - ((Powerseq (|r|,£))(In £)+1))

+ {(In f)A: (Ln f)A . Max{ Absset g) . ]r:s|
((Powerseq(|r},f))(Ln £) + (Powerseq(ls],f)){Ln f);i))

The right side is the sum of two terms, each of which is the product

~

of several factors. One factor in each term (namely, Max(Absset(Subt{f,g}))

in the first term, |r-s] in the second) is infinitesimal by hypothesis,

and the rest are limited (the powers of |r| and |s| are limited

by (5.29) since Ev+1(Ln ) .

Is the condition ¢ (In f) really needed? Indeed it is: 1f

R

(n) , then 2~2 +1/2° but 2" 4 (2+1/2™)"

ev(n) but -e , 80 the

v+il

polynomial x" is not "continuous" in the sense deseribed by (5.30).
It is convenient to know that every limited fraction is infinitely

close to some fraction whose numerator and denominator are in U“ .

In fact, more can be said.

5.31) Def r 1is a Uv-fraction <> r is g fraction & Numer r ¢ Uv &

Denom r € Uv .

5.32) r is limited ——> Hslﬂsg

(s. and s, are U -fractions &
1 2 v

~ ~

s, < T <8, & 5~ T ~52) . -
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|V>

Proof. We may assume r 0 . Let k be such that

Ev(k) & r<k, and let n be such that k-n E,UQ but = ev(n) .

Then {r-n] is m for some m , and in fact me Uv because

aAnn AA ram AR

m< kn . Let s, be (m~1)/n , and let S, be (m+l)/n . The

AAmn A AAA AN

desired conclusions follow from m/n < r < {m+l)/n and the fact

A A A

that 1/n is infinitesimal. ”

Note that the preceding procf regquired the existence of a nonzero
infinitesimal; as such, this was the first time we actually used axiom

(5.1). That axiom is essential in all that follows.

5.33) dal{a is aset & yrire a<— r is a Uv—fraction)).

:

Proof. Let ¢ m) &m ¢ U\, , and let M

1l
A
[
iy
%

v—l(

Then Ev—l(M) » s0 e{M) (because we specified v > 1) , so there is
a set 2z consisting of all numbers from 1 to M . Now if r is a
Uv—fraction, then r = <Sign r, Numer r , Denom r> < <l,m,m> = M ;

hence we may define a as the set {re z: r is a Uv—fraction}, which

exists by bounded separatiocn. “

Sums and products of Uv—fractions need not be U&mfractions, of
course, and for this reason our principal objects ﬁf study are the
limited fractions, not the Uv-fractions. On the other hand, propositions
(5.32) and (5.33) give some indication of why the bounded notion of a
Ug—fraction is a useful cne: the Uv—fractions form a set, and this

set contains approximations to every limited fraction. These facts

will be used frequently. For instance:
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~ A A

5.34) r is limited & 0 < r —> gs(s-s~r)

~

Proog. Assume ro 0 . Let t be the larger of the fractions r

~ ~

and 1, 50 T < tet s By (5.33) and bounded separation, there is a

set whose elements are the Uv-fractions s such that

~

-8 , and this set, like every set of fractions, has

| A

t & r

O
A

< s
a <-smallest element, say SO . By (5.32) there is a Uvufraction s

1

-~ A ~ ~ ~

;3 it follows that r

such that sl < SO,& slrusO sl-sl < 5}50-30

~ ~

and 5175~ 858, (by {5.24)}, so that 8,78y~ T » a8 desired. ||

5.35) f is a polynomial & 24rDeg T & Ev+l(Ln ) &

Vi (1 <1i<Inf——> £(i) is limited) & f£(ln £) 40 —>

gr (r is limited & Polyvalue (f,r)~ 0)

Proof. This is basically like (5.34). Since all coefficients
of f are limited and the highest-power coefficient is not infinitesi-
mal, all coefficients of Normalize f are limited, and so is

t = Fixsign (Normalize f). By (4.80) or (4.82), we have, depending

‘on the sign of f{in f), either Polyvalue (f,t) > 0 & Polyvalue (f,-t) < 0

or Polyvalue (f,t} < 0 & Polyvalue (f,-t) >.0 . In the first case,

let r be the smallest fraction in the set of all Uv—fractions &

~

such that -t < s <t & Polyvalue (f,s) > 0 , and let s, bea

Uv—fraction such that Sl <r & slnfr . Then

Polyvalue (f,sl) < 0 < Polyvalue (f,r) (except possibly in case

AN ~

s; < -t , in vhich case we can redefine 5, to be -t) , and by (5.30),

Polyvalue (f,sl)ﬁ'Polyvalue (f,r) . Hence Polyvalue {f,r)~0 . The

proof in the other case is similar. ||
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As particularly simple conseguences of (5.35), we have the

cases in which Deg f is 1,3,... :

5.36) 8y and a, are limited & a; 40—

qr (r is limited & ao+a1-r"~0) . H

a and a, are limited & aB'f 0 —

a, ,4a
03 l! 29 3

i imi ;-+ T+ srer-r~0 .
gr {r is linited & a, &) -rta,.rerfasrerer 0 I

The ftwo-sonted theony Ry

The preceding results show that the equivalence classes of limited
fractions modulo the relation ~ behave very much like real numbers.
The discussion of many-sorted theories in §3 provides the necessary
tools for handling these equivalence classes and unifying our presentation.
To this point, we have been working in (an extension by definitions
of) a theory EU with only one sort, say n ("numbers”). Let us
now adjoin to ah a new sort x ("real numbers"); we shall use lower-
case Greek letters for variables of sort 4 . Also adjoin & new
binary predicate symbol ¢ of type (n,2) and three new nonlogical

axioms:
5.37) Ax zr (r is a fraction & r is limited & vs {8 ¢ a < s ~r)) ;

5.38) Ax r is a fraction & r is limited — d@al(r ¢ o)

5.39) Axrecoad&rep—a= 8
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Call the resulting two-sorted theory Rgv . The superscripts,
which we shall usually omit, remind us of the dependence on u (the
number of hypersmashes availéble in au Y and v-;(the level of
exponentiability used in defining "limited"); the subscript indicates
that RO is the first in a chain of increasingly powerful theories to
be developed in this section and the next.

Note that every symﬁol or axiom of ay is 2 symbol or axiom of
sort n in R. . In particular, there is in ay a symbol ¢ , SO

o

there are Awo symbols e in RO : the familiar ¢ from au of

type (n.,u) and the new symbol of type (m,t) . This is the first of
several occasions on which we shall use one written symbol for function
or predicate symbols of two or more different types. No ambiéuity‘
should arise as long as we always make sure we can recognize the sort

of a term. This prineciple even allows dropping the sort-subscripts

from the equality symbols iq and ﬁm

Axioms (5.37)~(5.39) are exactly of the form (3.11)-(3.13),

where ELEJ is the formula "x 1s a fraction & x is limited."

Moreover, (3.6)-(3.10) are theorems of au for this A[x] . (Strictly
speaking, to satisfy (3.7) we should first change the definition of =~
so that it applies only to limited fractions; actually, though,this

is irrelevant since such a change would not affeect (5.37)-(5.39).)

Therefore, by the general result of §3, RO is interpretable in au

The interpretation IO is such that Io(n) and Io(n) are both n

(of course}; Unx > X = X 3 qnx <—» x is a fraction & x
is limited; o is u for every function or predicate symbol 1
0

of 0" ; and (s);

and (e)I are both ~ .
o - 0
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Mathematics in R 0

Having established the interpretability of RO “in au » W& are
free to work in RO . The first order of business is trQnsferring
basic notions like addition and the order relation from fractions to

real numbers via the axioms (5.37)-(5.39).

A

5.40) Def O =, 0> Cea .

The existence condition follows from {5.38) and the unigqueness condition

from (5.39). Likewise for the following definition:

5.41) Def r =, 0 <7 is a fraction & r is limited & r e a,

otherwise qa o .

= .

~
~

We agree to abbreviate n to oo Though technically ambiguous, this

notation is consistent with (5.L40) and should not result in confusion.

~

co. &Tr. coa. &Tr, + T. € B) -

. 4a,, =
5.42) Def g.4a " B <—> T 1 5 5 1 5

1% ary (r

T 1

This is a definition of the form (3.15); the preliminary result (3.1h)
is exactly {5.23). Therefore, as described in §3, (5.42) is & legitimate
defining axiom for the "induced" function symbol + of type (a3} .

Similar remarks apply to the next several definitions.

5.43) Def - =, B <> gr (reak -reg) .

We shorten o+(-8) to a-g .

5.4L)  Def @ e, S, B <> AT AT, (r1 € o & r, e By & r,°T, € B) .
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5.45)  Def al/uQ =y g <——> (o ca. &r. eca. &

2 'n 172

rl/r2 e B}) V'(u2 =, 0&B= 0) .

For the order relation we must proceed carefully; it seems

L

best to define < first.

~

> drils (rea &seB &r<s) .

5.46) Def a < B<
5.47) Def ¢ < § <—= 0 < B & o #n 8
5.48) Def ja|] = g <—= Hr (rea & |r| e B) .

Here, finally, is one way of defining the greatest{ integer
function. The reader should have no trouble supplying the appropriate

conditions.

~

5.49)  Def [a) =, <—> v (re o & [r] c §) &~Er (r e a g lr] 2 1cag).

The intenpretation of RCF din Ry

The ordered field axioms (4.12)}-(k.15), (h.20)-(L.23), and (L4.27)-
(4.33) for fractions have obvious counterparts for real numbers. It
is surely not necessary to list them all; we record two sample proofs

(for the theorems corresponding to (4.20) and (L.30)).
5.50) o Fg =8 t+ta .

Proof. There exist limited fractions Ty s 8y s T and 5, such

~

that riea > 8 €8 r1+51 € ot 5 Toew s By € B oy and‘

3 + . ~ ~ .
5,7, € Bta Bow r, ~T, and 5.~ 8, by (5.37), and therefore

~

8T, = Iy¥s, ~To¥s. by {4.20) and (5.23). It follows from (5.37)

again that s,+r, e o+ ; then a+p = g+a by (5.39). ||




5.51) @ 20— g- (1/a) =1 .

Proof. Take r e o ; since o # G, . r is not infinitesimal
end Recip r = 1/r is limited; in fact, 1/r e 1/a (because 1 ¢ 1

and rTea). But r(l/r) =1 by (4.30), so, by the definition (5.4k),

e (1/a) =1 . |

The absolute value properties (4.35)-(4.37) also hoid for real

numbers. More importantly, we have the following versions of theorems

(5.34) and (5.36):

5.52) o> 0—> 3B =a) . |

~

5.53) ay # 0 —> mlajjta -8 = 0) . ||

oy # 0 — @ (agta, "Bra, "B BHug"B B B = O) . i

Irn other words, all the real closed field axioms are thecrems about

real numbers in RO . This is the essence of

Metatheonem K. The theory RCF of real closed (ordered) fields is

interpretable in RO .

Proo4. The theory RCF has one sort, say o , and nonlogical

symbols O , 1 ,+ , . , and < . To define the interpretation I ,

let I(g) be # , define Ugqg <—> a = o , and let (= ). ,
o n g'l

~

O 51y s *15 "7 » and <1 be the symbols 0 0,1,+,,ad

. Conditions (3.1)~{3.5) in the definition of an interpretation

are all automatic since U& holds universally and (zUOI is = H
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6. An Expanded Theony

In the one-sorted theory Q“ , cbiects of any kind vhatsoever -
primes, ordered pairs, fractions, infinitesimals —-- can serve as elements
of a set, values of a function, or terms of a séquence. In the two-
sorted théory RO , on the other hand, there is a new kind of object —-
real numbers -- for which this is not the case. This section is con-
cerned with successive refinements of RO in which one can study sets
of real numbers, functions from the real numbers to the real numbers,
sequences of real numbers, and even sequences of sets and sequences of
functions. In principle, the methods used involve nothing more than
further applications of,the equivalence-class construction of §3; it
seems advisable, though, to vary the approach slightly in order to
mzke the notation more appealing. At the end of the section we check
that the most complex of the theories constructed, a theory called

Rh , is interpretable in ﬁ” .

Sets of neal numbers

We first discuss a theory RE“ , or just Rl , designed to accom-
modate seis of real numbers. For these objects we have a new (third)
sort 4 . We shall use lower-case Latin letters with the subscript
4 for variables of sort 4 ; corresponding conventions will be
employed when we discuss other sorts later in this section. In Rl
there is a funection symbol of type (n3;s4) which we shall alsc denote

by 4 3 if a is a set of fractions {in the sense of Qu ) , then

&a will be the corresponding set of real numbers. There is also a

predicate symbol ¢ of type (n,4) with the obvious intended meaning.
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The axioms of Rl s in =ddition to those of RO , include three
dealing with sets. The first describes exactly how the set of real

numbers a corresponds to the set of fractions ba

6.1) Ax a is a set of fractions > Voo e 42 <—=> Hr (re a &

re a)) .

Observe that the first e here is the new one, of type (n.,4) ; the
second is of type (n,n) , and the third is ocur old friend from Q” .
The remaining two axioms state that every set xé corresponds to
some set of fractions a and that a set is uniquely determined by its

elements.

’

6.2) Ax Ha {a is a set of fractions & 4a = x. ) .

6.3) AXVG(DLGXA< > @ € yA) >xX, =¥ .

These axioms give us many simple sets. The simplest is undoubtedly

40 .

6.4) vala ¢ xé) <

Proof. Since 0O is the empty set in Qu > Va{o £ 40)

follows from (6.1). Conversely, if Va{o ¢ xé) , then

> o e 40) , s0o x. = 40 by (6.3). ”

ne <
wa( x X4

4

Given a real number o , we can find a fraction r such that
rea by (5.37). In 9" , we can form the singleton {r} ; the

set &{r} then has o as its only member. If we had chosen a dif-

ferent r , A{r} would still! be the same by extensionality (6.3).
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In other words, we have checked the existence and uniquéness condi-

tions for the following definition.

£.5) Déf {a} =6 X, < > Ar{r ¢ o & A{r} = Xé)_.

>B=a . |

6.6) B e {a} <

A similar method can be used to define elosed intervals.

<

E&.7) Def [a,B] > {a = 8 & X, = {a}) v

%
(o # R&rEsHalr ¢ o & s ¢ B & & is a set &

vt(t € a <—> ¢ is a U -fraction & r <t <s) &

£.8) «yela,B] <

>ac<yze -

v

Of course, a set of fractions may contain fractions that are un-
limited. Bince such fracﬁions do not represent real mumbers, however,
it is only the limited fractions in a that have any bearing on 4a .
In particular, if a 1is the set of &l Uv—fractions, then every real
number is represented by some element of a , so 48 is the set of

all real numbers.

£.9) Def (-w,©) = x <——> HFala is a set &

4 4

yrire a <—— r is a Uv—fraction) & sa=x) .

4

6.10) voalo e (=o,=)) . |

The reader should have no trouble defining (-=,8] and [a,.,») .
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6.11) Def x, ¢y, < vala ¢ X, > o yA) .

£.12) Def X, UV, = < Hadb {a and b are sets of fractions &

Z
4 4 4

Aa*xb& f.ﬁbzyl:S & s(au 'b)=zé}.

The existence condition for (6.12) follows from (6.2) and the unique-

ness condition from {6.3).
6.13) o« XUy, T oe X Vaey o I

Interestingly (or alarmingly, depending on one's point of view),
the intersection of two sets of real numbers need not exist as a set
of real numbers at all. Let a be the set of all positive Uv-fractions
with denominator 1 , so that ga is the set {1,2,3,...} (really
{1,2,3,...}) of all positive integers (in the real numbers). It is

easy to see that there is a set b consisting of all fractions of the

form n+1/2n with 1l <ne U : then 4b is the set of real numbers
— v

{1%3 2%3 3%3;..} . A real integer m is in 4b if emd only if
1/2™ is infinitesimal -- that is, if and only if 'Tev+1(m) . The

elements common to both 4a and Ab , therefore, are exactly these
integers m . But they do not form a set, since very set of real
numbers is sc¢ for some set of fractions c¢ and every set of fractions
contains a smallest element.

The fact that the sets a énd b in the above example contain
unlimited elements is unimportant; indeed, by taking reciprocals

we can convert the example to one in the unit interval. What is important

ig that sets of real numbers come from sets of fractions, and unbounded
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properties (1ike ¢ }  cannot be used in defining sets of fractions.

v+l
This idea is also at the heart of the following proposition, which

asserts that "all sets are closed"; the argument is of the "overspill"

variety common in nonstandard analysis.

>

6:13) vele > 0 —> a@(|pwa| <e & Be x))

> o e X -

Proof. Let a be a set of fractions such that XA = 4a ; then

vy(ly e X, <> gr{rcy &rea)) . Take se a , and form the set

{!rmsl: r ¢ a} of nonnegative fractions. This set has a smallest
element e . The real number e cannot be positive by hypothesis,
so e is infinitesimal. That is, some r satisfies re a and r~s .

]

Byt r~5 & s € o implies r e o , which together with r e & implies

Functions
Just as sets of fractions give rise to sets of real numbers,
certain functions whose domains and ranges are sets of fractions will
give rise to functiong from the real mambers to the real numbers. To

clarify the meaning of "certain", we make the following definition in

6.14) Def f is a real function <——> f 1is & function & Dom f and
Ran T are sets of fractions & Vrys(r e Dom f & s € Dom T &

r is limited & r~g — £(r) is limited & f(r)~ £(s)) .

Let R;U be the theory obtained from Rl by adjoining a fourth

sort 4 ("functions from the real numbers to the real numbers") 3
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a function symbol { of type (n3f) (whose role will be similar
to that of the function symbol 4) ; a predicate symbol of
degree 3, - maps - to * , of type (§2) 3 and three new nonlogical

axioms:

6.15) Ax £ is a real function —>

Yo(Eg{4f maps a to B) <> Ar(r € a & r ¢ Dom £)) &

vovRyr(r € o & r e Dom £ & 4f maps o top — flr) e g) .

6.16) Ax gg(g is a real function & {g =ﬁfﬂ) .

6.17) Axvouurﬁ(f6 maps o to g<—> g6 maps a to B) —>

Our first theorem of R2 allows the awkward predicate symbol
. maps + to + , introduced here for simplicity of the interpretation

in ay , to be replaced by more convenient notation.

6.18) f, maps o to B & T

maps o to —_> R .
6 6 b Y
Proof. By (6.16), fﬂ is 4g for some real function g . By
(6.15) and hypothesis, some T satisfies r e o & r ¢ Dom g . Then,

by (6.15) again, we have g{r) ¢ B & g(r) ¢ y , vhence f-=y by (5.39). ||

meps o to B , otherwise § = 0.

-

6.19) Def T, (a) =}L;B <« f

§

6.20) vaveﬂ(fﬁ maps o to B ) < fﬁ = {0 .

Proof. Since 0 is the "empty function", so is {0 by {6.15).

That {0 is the only empty function follows from (6.17). ”
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6.21) f and g are real functions & {f = §g — 4(Dom ) = 4(Dom g) .

Proof. Suppose © € 4(Dom T). . By (6.1), there exists r such
that re o & re Dom £ , so by (6.15), BR{4{f maps o to B ) .
If 4f = {e , it follows that #EB(fg maps « to B ) , that

gr(r ¢ ¢ & r ¢ Dom g) , and thus that o ¢ 4{Dom g). Likewise

a e s{Dom g) > o ¢ 4(Dom £), so Q(Dom £) = 4(Dom g) by (6.3). I

6.23) Def Dom f < qe¢(g is a real function & {g = f6 &

£ 5%

x, = 4(Dom g)) .

6.24) «a € Dom,fé <« Es(f6 maps a to B ) . |

Eariier we saw by ekample that the intersection of two sets of
real numbers need not be a set of real numbers. There is a similar
counterexample to the assertion that every function on the real numbers
has a zero set. Define f on the positive integers by f(n) = /2",
and extend f tco the positive Uv—fraetions by piecewise linearity..
Then f is a real function, and §f(a) = D  if and only the
greatest integer in a does not satisfy €41 ; hence there does not

exist a set of real numbers x such that vaflo € X, < {£(a) =0) .

The converse to this nontheorem, on the other hand, is true:

6.25) &f,(Dom f, = (w0 ,») & Valf

§

(0) =0 <= qa ¢ x3)) .

8 §

Proof. We may assume that X, is nonempty. Let a be a set of

fl

fractions such that 4a X Define a real function g on

Uu-fractions by letting g(r) be the smallest fraction in the set
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{ls-r|: se al , andlet f, be §g . Then Dom f, = (-=,») ,

¥ { ¢

and fﬂ(u) =90 if and only if some r € o is infinitely close to

some -5 € a —— that is, if and only if o € X, I

.

Corresponding to the fact that all sets are closed is the following

proposition, whose assertion is that "ell functions are continuous”.

6.26) ueDOmf6&€>5 > H§(§ > 0 & YB(B € Dom T, & |B-a|< & —>

4
Ifﬁ(s)-fﬁ(a)l <e)) .

Proog. Suppose a e Dom f & ¢ >0 . Take a real function g

8

such that {g = f6 ; take r ¢ @ such that r ¢ Dom g ; and take
ee e . Then the set {|s-r|: s ¢ Dom g & |g(s)-g(r)| > e/2} has a
smallest element + , which cannot be infinitesimal since g is a

real function and e/2 is not infinitesimal. ILet § ©be t/2 . If

B ¢ Dom T , then there is some s such that s € g & s ¢ Dom g

4

if |p-a| <& , then |s:r| <t , wWhence |g(s):g(r)! < e7é , and .

thus | f,(g)-f (o) <e/2 <e . |

§ 8

Two more appealing facts are that every function on a bounded set
is uniformly continuous (6.27) and that every such function attains a

maximum (6.28).

6.27) Dom f, < Iy s,] &e > 0 —> (s > 0 & vav8 (¢ ¢ Dom £

6
8 e Dom T, & |p—a| <8 — |Ff,(B)-F,(a)] <€ )) .

8 - 6

Proof. Take a real function g such that fg = fg and such

that Dom g contains no unlimited elements, and take e e e . For
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each fraction r in Dom g , let t be as in (6.26), so that
t 70 and vs(s e Domg & |s-r| <t —> Jels)-glr)] < e/2) . As
r ranges through Dom g , these fractions 3 form‘a set. Let tO

be the smallest fraction in this set, and let & be EO/E -”

6.28) Dom fé 5_[Y1,Y2] —> @af{o e Dom f6 & 7¥8(R € Dom fﬁ ——
£,(g) < £,(a))) .
(RN |
Proof. Let g be a real function such that {§g = f6 and such

that Dom g contains nc unlimited elements. There is some T in

Dom g such that g(r) is largest; let o be T . I

It is important to un@erstand how bﬁundedness of Dom f is used in
the above two proofs.

Defining the sum of two functions presents a mild difficulty, since
if f and g are real functions with Dom {f = Dom fg , it does not
necessarily follow that Dom f = Dom g . The problem is by no means
an insurmountable one, however. First consider the following situation.
We have a real function f and a set a of fractions such that
Aa € A(Dom f). How can we extend f to a real function fl such that
Dom fl =Dom f u a (and therefore necessarily 6fl = §f) ? The
simplest way is to define fl(r) , for each r in a , to be equal to
f(g) , where s is the element of Dom f closest to r . Of course,

there may be fwo such elements, in which case we must specify which one

to choose.

6.29) Def Extend (f,a) = £ <

f is & function & Dom f , Ran £ , and a ,are sets of fractions &

f is & function & Dom fl =Dom f U a &

1
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vr(r ¢ Dom T > fs(s € Dom £ & Vt(t ¢ Dom £ —>

1
|t ir| 2_1s:r|) & Vt{t ¢ Dom T & 't:rl

[l

[sr] —

1l

0.

i}

s i_t) & fl(r) f(s))) , otherwise f

i

1

The unigueness condition is at least as clear as the definition.

Cbserve that Card f. < Card f + Card a and Bd fl < <f U a,f> ,

1
so that the function symbol Extend is bounded.

6.30) f is a real function & a 1is a set of fractions &

sa c 5(Dom T) > Extend (f,a) 1is a real function &

Dom Extend (f,a) = Dom T U at vyr(re Dom £ —> (Extend {f,a))(r)

f(r)) & § (Extend(f,a)) = 41 .

]

Proof. Let fl be Extend (f,a) . It suffices to show that

if r is a limited fraction in a , then fl(r)~ f{s) for some
(hence every) s in Dom f with r~s . In fact, fl(r) is equal

to f{s) , where s is the element of Dom f closest to r , and

the assumption 4a S_A(Dom f} implies that r~s for this s . ”
The sum of two functions is now easy to define.

6.31) Def f6+g6 =6 hﬁ <— Dom fé = Dom g6 &

Efoﬂgoﬁho(fo, gy> and hy  are real functions & {f, = f6 &
6g0 = g6 & Dom hO = Dom f, U Dom g, % Vr({r ¢ Dom hO —_

ho(r) = (Extend (fO,Dom-gO))(r) + (Extend (gO,Dom fo))(r) &

6h0 =h , otherwise h, = 40 .

§

6)




6.32)

6.33)

6.34)

6.35)

6.36)

6.37)

6.38)

6.39)
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) = Dom £, &

g §
Vala € Dom fﬁ — (_f6+g6)(a) = fé(a) + gﬁ(a)) . H

Dom f, = Dom g, > Dom (f,+g
§ g 4

Def —fﬁ -;5 g

6f0 = fﬁ & Dom By = bom fo_& yr(r ¢ Dom f‘o B go(r) =

4 <— HfO{HgO(fO and g, are real functions &

-~

“25(x)) & fg, = &)

Dom (_fﬁ) = Dom fﬂ & Va{a ¢ Dom fﬁ > (—fé)(a) = —(fé(a))) ”
Def fﬁ.gﬂ =6 htg <> Dom fts = Dom g6 &
HfO}E{gOHhO(fO » 8, » and h, are real functions &

5f0 = fﬁ & 6g0 = gé % Dom h0 = Dom fO v Dom g, & yr{r ¢ Dom hy ==

~

h (r) = (Extend(f ,Dom g,))(r) + (Extend(gy,Dom £,))(r)) &

0 0°?
h, = h,) , otherwise h, = {0 .
by { 4 4
Dom £, = Dom g, — Dom (f,*g,) = Dom f, &
% 4 6 b g

Vala ¢ Dom f, —— (f

ﬁ 6.gd)(a)f t(a) g la)) - |

Def q-T < HfOHgOHS(fO and g, sare real functions &

§ 4 %

6f0=f6&sea&Dome-—DomgO&Vr(reDomfo-—v

Bolr) = 5-£,(r) & fg; = &)

Dom {g-+f,) = DomAfB & Va(B ¢ Dom £, — (a-f,)(B) = a"(£,(8))) . |

8 § § §

Def o/f <= ya(g ¢ Dom £, — f,(g) # ) &

=, B
¢ & 6 6 6
- - &
EfO'.E{gO‘.Hs(fO and g, are real functions & ﬁfo fiS & 8¢ a

Dom g, = Dom fO & yr(r ¢ Dom fO — go(r) = s}fO(r)) &

g. = &, ) , otherwise g, = {0 .
8 G 4 3 § 6
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6.L0) VB(B ¢ Dom £, —= f£_{(g) # 0)

; ; > Do (a/fé) =" Dom fﬂ &
yR (B € Dom fﬁ - (cx/fé)(B) = a/(fﬁ(ﬁ))) Al

6.41) Def ig/gg =6 fé-{l/gz)

6.42)  Dom fﬂ = Dom g, & vala € Dozil.\g‘S —s g {a) # 0) —

§ 8

Dom (fﬁ/gé) = Dom fﬁ & Vol ¢ Dom fﬁ —_ (féfgé)(a) =

1, (a) /g, () il

Two more useful operations are composition of functions and

restriction of a function to & smaller domain.

6.43) Def f,og, =, h, <~ VYola ¢ Dom g, —> g,(a) ¢ Dom £,) &
8 6 6 4 6 4 §
gfoﬁgoﬁho(fo . go , and hO are real funetions & 6f0 = f6 &

$8y = g;tg & Dom hO = Dom g, & yr(r ¢ Dom hy —>

hy(r) = (Extend(f ,Ran g,))(g,(r))) & §n, = hﬁ) s

otherwise = 40 .

%
6.44)  valo € Dom gé — gﬁ(a) ¢ Dom fé) — Dom fﬁogé = Dom g,ﬁ &

VYa{o ¢ Dom g?S — (féogé)(a) = fé(gﬂ(a))) . ||

6.45)  Def férxé =6 g46 <> X, c Dom T, & Efoagoﬁ{a{fo and g,

g

are real functions & 6f0 =f & a 1is a set of fractions &

6
fa = x & Dom g, = @ & Vr(r ¢ a —> go(r) = {Extend(f, ,a))(r))&

0*®
fg_ = g,) , otherwise = {0 .
o

86

6.46) x, < Dom fﬂ > Dom (ffrxb) =x & Vala € x > (fﬁrxé)(ct) =

fﬁ(u)) -
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Sequences
The next of our refinements involves another new sort, Sa
("sequences of real numbers"). It comes equipped ﬁith three function
symbols: a symbol Sn of type (n;Sn)k, a symbol In of type (Sa:n) ,
and a symbol (-} of type (Sn.nix) . The following axioms should

by now be self-explanatory.

> In (Sx u) =

6.47) Ax u is a seqguence of limited fractions

In u & Vi (1l <i<Inu—>ul(i)e (S w)(i}) .

6.48) Ax Fv (v 1is a sequence of limited fractions & Sua v o uSn) .
. Ax Ln'u, = L i i i) =
6.49) nug, n v, &Vi (1 <1i<In ug, T uSn(l) "
VSA( ) YSn sn Vsm
Call the resulting theory Rgv .

One advantage to the theory R is that in it we can study poly-

3
nomials with real coefficients in a more general setting than in §5 .
The theorem (5.30), in light of (6.47) and (5.37), is just the

uniqueness condition for the following definition.

6.50) Def Polyvalue {gSn,a) 3[B‘<———> €41 {In uSn) &
ZvIr (v is a sequence of limited fractions & Su v = u &

S
r ¢ a & Polyvalue (v,r) ¢ 8) , otherwise g = 0 .

It is patural to regard polynomials as functions, of course, and the

next proposition allows us to do just that.

6.51) €

v+l

(ILn quL) o Hfﬁ(Dom fﬁ=x6 & Valo e X, -—> fﬁ(a)

Polyvalue (uS&,a))) .
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Proof. Let a be a set of fractions such that 4a = x .,

and let u, be a sequence of limited fractions such that
Sr uy =y, . The set {<r,Polyvalue (ugsr)>: re a} is a real

function, say f, . Let f be {f, Al

§

It is a simple matter to define elementary syntactic operations

on sequences.

.52}  Def uS!LIl’j] = VS)L- <e—s 1< 1< < In U, &

HuOHvo (uo is a sequence of limited fractions &

il

Sn w, = ug, & v, = uo[l,J] & Sn v VSIL) , otherwise

0

Vo =Sn 0.

6.53) 1<i<j<lIn U, T In Usn[l,g] = j-itl &
vk (1< k < J-i+1 —> (u, [1,3])(K) = ug, (k+i-1)) . I

. f = .

6.54) De Yo, ¥V, Ton Van e EuOEvOE[wO (uo and Vv, are sequences
of limited fractions & Sa U = quL & Sn vy = vSfL & v =
Uy ¥, % Sx vy = WS/L) .

6.55) In (lleL*vSfL) = In gy + In v & vi (1 <1i<In U, T

Sh
(USIL*VSJ'L)(i) uS}L(i)) & vi (In g, < i< Iny, +Inv, —
(ug), ¥vg,, 1 (1) = vg, (i-In ug ) -

H

S

Tt is also possible to define the termwise sum and product of two

uences and vV the sequence of partial sums of
sed Yon Sn » the sed ¢ P Yon

ags long as Ev_(Ln uS}L_) , the sequence of partial products of US}‘L

as long 8s € .9 (In USJL) , and = sequence Vo, of powers of o as
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{Ln WSM) . The restrictions are necessary: 1if

wsv(n) , then the sum of 1 infinitesimals need not be infinitesimal,

long as €41

and if -e . (m) , then 2 raised to the u’? power is unlimited and
so does not represent a real number. These operations provide an

alternative way to evaluate a polynomial, which can be shown to be

equivalent to (6.50). The details are straightforward.

More seguences
The last two sorts to be introduced in this section are S
("sequences of sets") and §§ ("sequences of functions™)}. The reader
could probably provide the mechanical details himself, but for the
record, Rﬁv is the theory obtained by adjoining these two sorts .
to R3 together with function symbols Ss of type (n3iSs) , S§ of

type (n3;84) » Ln of type (Sss) , In of type (Sgm) , () of

type (Sa.n3s) , and -(.) of type (Sf.m:f) , and axioms (6.56)-(6.61).

6£.56) Ax u is a sequence of sets of fractions —
In (S84 u) =Inmué& Vi (1l <ic<Inu—> (S5 u)i)=

5
s{u(i))) .

6.57) Ax gv (v is a sequeﬂce of sets of fractions & Ss v %SA uSé)

6.58) Ax In Ug = In Vos g Vi (1<i E_Pn o, T Usé(l) =
vSé(l)) Y5 Tss Tss

\6.59) Ax u is a sequence of real functions —> In ($§§ u) = In u &

vi (1< i< Inu—> (8§ u)(i) = f(u(i))) .

8

6.60) Ax 3v (v is a seguence of real functions & Sf v g4 usﬁ) .
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6.61) AanuSé =ansﬁ & vi (1 <i<In —_ 'usﬁ(i) ""“tg

vsé(i)) — ugs g4 Veq -

Ug g

Clearly we can segment and juxtapose seguences of these two sorts,
We can form the termwise sum, product, and composition of two sequences
of functions, the sequence of partial sums of a sufficiently short
(Ev) sequence of functions, the seguence cof values of a given seguence
of functions at a given real number, and, for that matter, the sequence
of values of a given function at a given sequence of real numbers --
all under appropriate conditions on the domains of the funcfions. Given
two sequences of sets, we can form the sequence which is their termwise
union; given oxne such sequence, we can form the sequence of "partial
unions" (whose last term is the union of all the sets in the original
sequence). All of these assertions are easy to prove; we illustrate

by showing that every sequence of functions has a sequence of domains.

6.62) HVSA(LnVSA = In gSﬂ &Vi(l1<i<Inu (1) =

S§
Dom g36(i))) .

>V

54

Prood4. Take a seguence u, of real functions such that

S4 uy = uSﬁ > let v, be the sequence of domains of the functions

in the sequence 1 {this is Just bounded replacement), and let v

0 S5
be S5 Vo Then ILn Vo, T In vy = In uy = In gsé , and if
1<i<lIn gSﬂ , then VSA(i) = A(vo(i}) = 4 (Dom uo(i)) = Dom 6(u0(i))
= Dom (8§ u,)(i) = Dom qsﬁ(i) S
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The dnterpretation of R, 4n g* .

In 85 we pointed out that there is an interpretation IO of

the two-sorted theory RO in (an extension by definitions of) the

one-sorted theory "QIJ . We show now that this interpretation can
be extended to successive interpretations Il"" ’Ill of the theories
Rl,... ’Rh in al-l . Actualy, nothing really new is involved. What

we should do, of course, is define U , (= })_ , and u for every
b o'l =

sort ¢ and nonlogical symbol u of Rh , verify conditions (3.1}~

(3.5) for an interpretation, and show that the interpretation of each

s

=<

of the new nonleogical axioms of this section is a theorem of .
What we shaff do is make the appropriate definitions and leave all

but a few of the obvious verifications to the reader.

First recall how the interpretation I works. We defined

0]
Unx <—> X T X 3 (=n)I is = ; o is u for every nonlogical
G 0

symbol u of 5_“ H U}Lx <—= x is a limited fraction; (sz)I

0
and €q are hoth ~ . Now extend ID to an interpretation Il

0]

of R, in 0" by defining

6.63) Def Uba <—> a 1is a set of fractions,

6.64)  Def al=)

401 b <«—s Vr{re a & r is limited ——

1

ds{s~r & s ¢ b}) & ¥Ys(s e b & s is limited —>

Hr{r~s & r e a)) .

6.65) Def L 8 = <—> Uéa & b=a , otherwise b =0 .
1
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18 <> qr (r~x & T € a) .

6.66) Def x{e )
44

(In discussing interpretations, we must use care in distinguishing
the various symbols e 3 here we write €, for the symbol of
type (n.,4) . Similar tricks will be employed with the symbols In
and -(-).)

Let us verify (3.1)-(3.5) this time. lFirst (3.1) is E{aUéa .
which is trivial. The form of (3.2) involving the function symbol

5 is a = a—> UA (éI a) , which is clear from the definitionms.
1

Certainly Uba —-— g (=A)I 8 , which is (3.3), is a theorem of 'QU .

1
and (3.4) for the function symbol 4 is x=x&y=y &x=y —>

(x) (=)

= 5.V , which is obvious. There are two forms of (3.5)
11 A Il Il

k: T = . i s =
to chec or = (3.5) is bel&UAyl&UAxe&Uéye&xl( 5) &

¥
Ill

x(= )1 ¥, — (x (=)

= = x., — y_{=
Al 5112 1

—A)I Yo

)} , and for e , (3.5)
1 A

i & U & U & U b & =
is U}Lx )LY Aa s x(= )

)7 Y & alsg)

1 Tl
yle )I b) . Both of these are theorems of "o:“

Let us also check the interpretations of axioms (6.1)-(6.3).

I

First, (6.1) = is a = a—> {a is & set of fractions —
Va{Ua — f{ale, ), 4, a e—— Ar(r=r & re.oa & r e a)))) (this
B 4714 IJ. Il

is a formula of Q" , so of course all varisbles are of the same sort),

>

which 1s clear when it is rewritten as a is a set of fractions
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> gqr(r~a & r € a))).

yo(a is a limited fraction —— (ale. ), 4, & <

.

171

Il
Nothing could be easier than (6.2} —: UAX —> gala =2 & a is =
set of fractions % 41 a( = )I x) (just let a Dde x). Finally,
1 4N
I

(6.3) T is Ux & Uy —> (vo(U,a

> (a(eé)ilx <> u(eé)lly))
x(=,)

= y)} , which is exactly the way we defined (=) .

1 471y

I
We shall not be so meticulous in discussing the remaining sorts.

A13 at once, here are the definitions for the interpretation I

(really Ih) of Rh in EP

6.67) Def Uﬁf <——> f 1is a real function,.

6.68) Def f(=6)1g <——> Dom f(=b) Dom g & yrys(r ¢ Dom f &

I

s ¢Dom g & r is limited & r~s > fr)~ g(s)) .

6.69) Def 6If = g <> Uﬁf & g = £ , otherwise g =0 .

6.70) Def f maps. x to y <—> fAr(r~x & r ¢ Dom £ & f(r)~y).

I

6.71) Def QSnu < > v is a sequence of limited fractions.

6.72)  Def u(=SA)IV <—>Inu=Inv&V¥i(l<i<Ilnu—>

u(i)~v{i)) .

6.73)  Def SﬂIu =v<—> Ugudv=u, otherwise v = 0 .

=Inu.

6.74)  Def (qu

n/ 1"
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6.75) Def (ufi)

Sn)I =r<«—> (1 <i<Inuétr=nui)),

otherwise r =0

6.76) Def USZu < u is a sequence of sets of fractions .,

6.77) Def ul=, )

Ss
u(i) (=,)v(i)) .

V<> Inu=Inyv §Vi (1 <ic<Inu—

6.78) Det SAIu = v o<— US u&v=u, otherwise v = 0
A

6.79) Def (In u=1Inu.,

SA)I

6.80) Def (u(i)y )r =a<—> (L<i<Inuéka=muli)), otherwise

6.81) Def U 6u <— 1 is a sequence of real functions.

S

6.82) Def u(=g );v<—— Inu=1Inv&Vi(l <i<Inu—>

§'1
u(1)(= ) v(2)

6.83) Def Sfu=ve—> Ugukvs=u, otherwise v =0 .

)

us=1Inu.

6.84)  Def (LnSﬁ)I

6.85)  Def (u(i)Sé)I

otherwise f =0 .

=f<—> (1<i<ILnukf=nuli)),

Conditions (3.1)-(3.5) are no harder to verify than before. Let
us spot-check the interpretations of a few random axioms, beginning
with (6.15)1, which is probably the most complex of all. This is

f=f— (f is a real function ——>

Va(qna — (EB(UKB & 6If maps; o to g ) <>
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gr(r =r & v e o & re Dom 3)) & Vu(?&u —_— VB(Unﬁ it
vr{r = r — (r e;o&re Dom T & 6If meps, o to g ——
{r) €1 g)))}) . If we remember that Uﬁq <— g i85 & 1imitéd

fragtion, that 6If = f if f is a real function, and that €1
is just ~ , this formula becomes 1ittle more than a restatement
of the definition (6.70).

| For (6.&8)I we have:

U uw— aviv=v & v is a sequence of limited fractions &

S
SnIV(=Sn)Iu

Finally, (6.58)% is

) , which is clear from (6.71)-(6.73).. {Let v be u.)

Sa S
(1< 1< (g )pu —> (ulilg)1(=,){v(1)g,)))) — ulzg)pv) >

U, u&U VT ((Fmgé)lu = (IMSA)IV & Vi (i=4i—

which follows directly from (6.77).

A nemark on Anduction

Conspicuously missing from the theories discussed in this section
is the capability to use induction on any formulas that are not
entirely of sort n . This deficiency appeérs unavoidable: all sorts
other than n are intended to represent highly unbounded concepts,
and in fact some very innocuous-looking forms of induction lead
immedistely to contradictions. For instance, if uS}L is a sequence
of real numbers, there need not exist a smallest i such that
uSn(i) =0 . It should be cleér already, however, that all is not

lost, or at least not all is lost; (6.62) is a good case in point.

If we want to prove by induction a formula involving sorts other

than n , we first use (5.37)-(5.39) and the axioms of this section
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fo translate the hypotheses intc a statement entirely of sort n;

if we are lucky, this formula will be (or can be weakened to be)
sufficiently bounded that some induction scheme is'applicable aﬁd
yields a statement that, when translated back irto the more con-
venient notation of the original sorts, implies the desired conclusion.
OQur study of calculus in §7 will provide many examples of this tech-

nigue. A nice exercise at this point is to define the nth Fibonacci

number and prove that if Ev+l(n) , then it is equal to

(((1+/5) /2)"=((1=V5)2)") /V5 .
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§7. A Suwwey 04 Caleulus

In this secticn we show that the theory Rh is sufficient to
reproduce the standard theorems of first-year calculus. The reader

will recognize many techniques from nonstandard analysis.

The dernivative
Our first objective is the definition of a derivative. Two

preliminary definitions:

7.1) Def deriv (fﬁ,a,fo,g) <— HYIEYQ(Yl <Y, & o e [Yl,yg] c Dom fﬁ) &
fO is a real function & 6f0 = f6 &

&
VT VT, (rpeabr,eabkr e Domfykr,cDomf, & Ty # r,

>

(£(r )=t lr)) {r or,) e £) -

7.2) Def f, is differentiable at o <—> AT IE deriv (fé ,a,fo,g) .

§

A few remarks are in order. First, note that in {7.1) the requirement
that o be contained in some interval that is a subset of Dom fﬁ
precludes the possibility that there might be only one r such that
reca & re Dom fﬁ . Also, observe that a function is allowed to be
differentisble even at the endpoints of its domain. In our proofs in
this section, we shall often treat only the case in which o 1is an
interior point of Dom fﬁ , leaving any necessary modifications for
the endpoints to the reader.

Now & unigueness condition:

7.3)  deriv (f ,a,fl,gl) & deriv (f6 ,a,feaig} — £ =552 .

§
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Proog. Assume [a,o+e ] < Dom f6 for some ¢ > 0 . (If not, a
similar argument applies to some set [o-e.x].) Suppose £, < &2 )
and choose fractions 8y and s, with £ < 8y < 8y < Ep - Let )

and & be fractions such that &, ¢ o , & € Dom f. , 8, € o , and

2 1 1 1 2
a, € Dom f2 . If r ; a I~ 8 and T ¢ Dom fl » then by the hypo-
thesis deriv (fé,u,fl,gl) it follows that fl(r) = fl(al)l(r:al):x
for some X € £ in particular; fl(r) < fl(al);(r:al)?sl .  There-

~ ~

fore the set {r ¢ Dom f,: r > a; & fl(r) 3-fl(al)+(r"al)'sl} , if

l:
nonempty, has a smallest element tl , which is greater than and not

A A

infinitely clese to a. . Let be t. Aif t) < a+l ; if

1 T1 1 1
tl ZL31+1 or if the aforementioned set is empty, let Ty be a+ﬁ .
Likewise, if r > a2 . r%»ag , and 1 ¢ Dom f2 » then
. Y (rea)es. - : -
fg(r) > fg(ag) {r a2) S5 let 1, be either the real number repre

sented by the smallest element of the set

: + {r- X +1 i
{r ¢ Dom f2 r>a, b fg(r) i-fgcag) {r 32) s,} or else g+l (if

this set is empty or if its smallest element is 3_&2+l) .

Let vy be a real number greater than o and less than the smallest

of 1, , 1 and o+e . Some ry€y is in Dom f, ; since

1
( );(rl:al)ts

2 3

~ = > f “ . - -
r =y <1y it follows that fl(rl) < fl a, 1 Likewise,

~ ~ ~

- . - ‘ + _ . ]
some T, ¢ y 1is in Dom f2 , and fg(re) > fg(ag) (r2 82) 5, But
thisz implies

£ )os,)" = £, (a)+(y-a)"s

§

f6 1

< fﬁ(a}+(y-u)-ze = (fe(ag);(rziaz):sg)Ng_(fe(rg))N = fé(Y) )

{y) = (fl(rl))wi (fl(al)+(r1—al

which is impossible. We conclude that gl i EQ , ‘and similarly

52 £ gl . Thus El = 52 .
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7.4}  Def Deriv (,fé,a) =, £ &N deriv (fﬁ,u,fo,i) , otherwise

E=0.

It is, of course, convenient to regard the derivative of a function

as a function itself.

7.5) Def fg =6 gﬁ <

Dom g6 = Domf‘15 & Vd(a'e Dom g6 _ gé(a) = Deriv (fﬁ,a)) s

> vala € Dom f6 —_— f15 is differentiable at o) &

otherwise 86 = 40..

The uniqueness condition for {7.5) follows from (6.17}. One defect

of the notation f! 1is that f! will not exist (or, more properly,

§ §

will be the empty functipn) if there is even one point in Dom f6 at

is not differentiable. If T is the absolute value func-

6 4

tion, for instance, then £, 6 is differentiable at every real number

which £

except 0 , but its derivative does not define a function at all, since

every function must have as its domain a {closed) set.

Basic properties of derivatives
If any functions at all are differentiable, polynomials had better
be., First let us define the "derived polynomial" of a sequence of real
numbers. Recall that the ith term of a sequence corresponds to the

term of degree i-1 in the polynomial.

7.6) Def Derivpoly Y Ton Von <—  In Ve = In uSn—l &
vi (1 < i< In Ve T Vs&(i) = i-uSn(1+1)) .
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7.7) vaf{a ¢ Dom f6 —= 8Y3Y, (a € {Yl,yz] c Dom fﬁ) &

f,(a) = Polyvalue (ggn,a)) —= vyala € Dom f6

§

f, is differentiable at o & f!f{a) =

§ §

Polyvalue(Derivpoly‘gSn,u)} .

Pnoo5. Assume sv+1(Ln ?Sn) . {This is the interesting case.
Otherwise, by the definition (6.50), both Polyvalue (gSn,a) and
Polyvalue(Derivpoly ?S&’a) are 0 for every o .) Let

0

= = +1
Dom f6 .éxo , let PSA Sn u. , and let fO be the real function
defined on the set x, by fo(r) = Polyvalue (uo,r) . For each =«

in Dom f, , we are to show that deriv (fﬂ,a,fO,Polyvalue(Derivpoly'an,a)).

6

This entails nothing more than the obvious formalization in Rh of the

following argument: 1f re¢ o and s ¢ o , then

£ (r)-t (s) . Y By . In v, ip ,
o 0 -1 Ly Li-1 A i-1, _ . ) J i-2-j
== 3 (1).r*™ = 7 u (1) )= ) ul(i): )r's
r-5 r-s° .2 "0 0 -, O s
i=l i=1 i= J=0
In uowl 1.1 . . Ln uO—l i1
= z uo(i+l)° E e d o~ Z i'u0(i+l)-r ) ”
i=1 3=0 i=1

The next proposition asserts that differentiability is a "local”

notion.

7.8) £ >0 & l[a-e,0+e] ¢ Dom £ —>

((f

ig differentiable at o & Mrw{fpu)=€) <>

§

(fﬁf[u—s,a+e] is differentiable at o & Deriv (fér[u—E,a+€],a) = £)).
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Proof. Take s, € o-e and s, € atg . If deriv (fé,a,fo,i) >

1 2
then the restriction gy of fo to the set {r ¢ Dom fO: 84 S.r,i.sg}
satisfies deriv (fér[a—a,u%z3,m,go,5) .  Conversely, if

deriv (fér[a-e,a+s],a,gl,g) , then we may assume the smallest and

largest elemenis of Dom gl are sl and S5 regpectively. Let
f. be a real function with 6fl = f , and let f. be the extension

i 4 2
of gy tc Dom gl u {r ¢ Don fl: r <8V r > 52} that agrees with
fl on the latter set; then dériv (fﬁ,a,fg,g) l

We next verify the usual sum and product rules for differentation.

7.9) f is differentiable at o . » —f iz differentiable at o &

6 §

Deriv (—fﬂ,a) = _Deriv (f6 ) .

Proof. TIf deriv (fé,a,fo,g) and h is the negative of fO .

then deriv (-f,,a,h,-g) . |

4 :
T7.10)  Dom fﬁ = Dom gﬁ & f6 and g6 are differentiable at o -—>
fﬁ + gﬁ is differentiable at © &

Deriv(f£+g&,u) = Deriv (f6,0)+DeriV (gﬁ’a) .

Proog. By (7.8) we may assume Dom f6 = [a-e,0+c] for some
e >0 . Let deriv (fﬁ,a,fO,E) and deriv (gé,u,go,n) . Let fl
be the extension of fo to Dom-:f‘O U Dom g, defined by linear inter-
polation between successive values of fO . That is, if r ¢ Dom fO s

let fl(r) be f (r) ; if r ¢ Dom g & T ¢ Dom fq » S, is the

0 1

greatest element of Dom fb smaller than r , and Sy is the smallest

element of Dom fO greater than r , then define
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fL{r) = fO(Sl);(fO(SE):fO(Sl})?(risl)P(SQZSl) . (There may be

ﬁroblems st the endpoints o-¢ and ate ; if, say, T ig smaller
than every element of Dom f, , then define fl(r) by extrapolating

from the first two values of f£..) It is clear that fl is a real

0
function and that 6fl = 6f0 =T and almost as clear that

§

deriv (fﬁ,a,fl,g) .. Let gl be the extension of go to Dom fOiJ Dom g

obtained likewise, so that deriv {gﬁ,u,gl,n). Let h be the point-

wise sum of fl and g, on Dom f. U Dom gy - Then 4h = f6+g5,

G
and if r oeo % r,€ o & r, e Dom h & r, € Dom h & ry # r, then
h(r))-hry) £ (ry)-1(x)) g, (r))-e, (r))
T = — + — e £+n , whence
1 72 172 12

:

deriv (fﬁ+g6,u,h,£+n) , as desired. ||

7.11) Dom f6 = Dom g6 & :E‘6 and g6 are differentiable at ¢ —

il is differentiable at a &

65
. Deriv (fdﬂgﬁ,a) = fé(u)'Deriv (gﬁ,a)+g£(u)'Deriv (fﬁ,a)

Proof. Proceed as in the proof of (7.10) through the construction

of fl and gl . Let h be the pointwise product cf fl and gy >

so ¢h = fé-g6 . DBuppose r) e o & r, €@ & r. € Dom h & T, € Dom h &

~

1
so d~0 but 4 #0

r # r, let 4 =r,-v, , Then
= +qge.
); fl(rg) s.d for some S e &

Deriv (fz,u) , and

gl(rl) = gl(r2)+t-d for some ten

Deriv (gé,a) . It follows that

~

h(rl) = h(r2)+(fl(r2)-t+g1(r2)°s)'d+s-t-d-d , and thus

(n(r))on(r) /() € £la) mvggla) e |l
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7.12) vB(B ¢ Dom fﬁ > f (R) # 0) & fé is differentiable at o >

8
'i/f6 is differentiable at o & Deriv (I/fé,a) =
-Deriv (fﬁ,a)/(fﬁ(u)'fd(u)) .

Proof. Let deriv (f ,a,fo,g) , and let h be the pointwise

§

reciprocal of fO . Then h is a real function and 4h = E/f

§

If v, e a & T

1 c o &r, ¢ Domh&pr, ¢ Domhé& r, # T, > then

2 1 2

(n(r,) 20, )) () Pmy) = (2(mp) 20 (e ) Tpmy ) 20() (i 72,
-= 157(f0(r1)ff0(r2)) for some € e £ . Therefore
deriv (i/fﬂ,a,h,~£/(f6(u)'fﬁ(u))} .l
7.13)  vg{p ¢ Dom g6 — gé(g) # 0) & Dom fﬁ = Dom gé & f6 and g6
~are differentiable at o — fﬁ/gﬁ ig differentiable at o &
Deriv (fﬁ/gﬁ’“) = (gﬁ(a)-Deriv (fﬁ,a)—fﬁ(a)-DeriV'(gé,a))/(gﬁ(a)-gﬁﬂa))-

Proof. By (7.11) and (7.12). ||

Tt does not take much effort to prove other simple theorems about
derivatives, such as the chain rule and properties of local maxima and

minima.

T.14) ve (B ¢ Dom g6 —_— gé(g) ¢ Dom fﬁ) & gé is differentiable at o &

f6 is differentiable at g, (a) — T is differentiable at o &

§ 5%
Deriv (f ogﬁ,a) = Deriv (£, ,g, {c)) -Deriv (gé,u) .

§ §4

Proof. Assume that Dom g, 1is some small interval containing o

§

and that Dom f, is some small interval containing gg(a)'. Let

§

deriv (gésd’gosg) and deriv (fﬂ’ s

(7.10), extend £

(a),fo,n) . As in the proof of

by linear interpolation to a real function fl

0
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defined on Dom fD U Ran gq then deriv (fﬁ’gé(a)’fl’n) . If

rl € a & r2

go(rl) = gO(rg)QS'(

e o & ry € Dom Eo & r, € Dom &g & r # T, o then
rl—re) for some ' s ¢ £ ; since s-(rl—rz) is
infinitesimal, it follows that fl(go(rl)) = fO(gO{rz))+t-s-(r1—r2)

for some t e n . Because ﬁ(flogo) = fﬁogﬁ , the desired conclusion

is then immediate. H

7.15) ¢ > 0 & [a,otel c Dom £, & f, 1is @ifferentisble at o &

f, 4
> g8(a < B < o ek fﬁ(B) > fﬁ(a)) .

Deriv (fé,a} > 0

Proo4. Let deriv (f‘6

a e g such that a ¢ Dom fo , and take a fraction s with O < 5 < £ .

,u,fo,g) , 80 E > 0 by hypothesis. Take

A ~

The set {r ¢ Dom fo: r ;'a & f{r) ; fo(a)+s-(r—a)} contains all
elements of Dom fO to the right of a and infinitely close to a
it therefore also contains all sufficiently small elements of Dom fO
to the right of a but nef infinitely close to a . For such an

r,a <‘; < g+t and f,(v) = (fo(r)) >(f0(ﬂ))~= fﬁ(a) Al

§

7.16) e > 0 & la—,x]l c Dom £, & f, is differentiable at o &

§
(8) > £.()) - ||

Deriv(f ,G)<6_>HB(G—€<B<U.&f d

6 g

7.17) € > 0 & [a-e,a4 ] c Dom f6 & f{
VB(O;—Q < B < gte —> fé(B) _fﬁ(u)) ~— Deriv (fﬁ,a) = 6 . H

is differentiable at o &

~

7.18) &> 0 & [a-esate] ¢ Dom £, & £, is differentiable at o &

§

Valae < 8 < ate —> £,(g) » f,{a)) —> Deriv (£, ,a) =0 . I

§ § §

We now have all the tools for an easy proof of Rolle's theorem.
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> £, is differentiable at v)&

| g i
fﬁ(u) = fﬂ(B) — gyla <y <B& Deriv (f6 ) = 0) .

7.19) o <8 & [a,B] ¢ Dom fﬁ & yyla <y < B

Pnooﬁ.' By {6.28) applied to the functioms fér[a,B] and
_fﬁr{a,s] . f6 attains a maximum value and & minimum value on [a,B]. |

If both of these occur at the endpoints o and g , then T is

8
constant on [a,B] , s0 Deriv (fé,y) =0 for every y Dbetween a
and B . Otherwise, either the maximum or the minimum of f6 oceurs

at some vy with a <y <pB , and either (7.17) or (7.18) ensures

that Deriv (f

8

) =0 |

The usual adjustment by a linear function "to make ends meet" con-

verts {7.19) into the mean value theorem.

7.20) o< B&la,8] c Dom fﬂ&vy(a <y < B —> -fé is differentiable at y) —

(R)-f,(a))/(B=a))

§

ay( o < y < B& Deriv (fé,y) = (f

§

The following corollaries are irmediate.

7.21) o < B&la,8l c Dom £, & yy(a <y < 8 — f

§ g
Deriv (f16 w) > 0)—> _fé(a) < fé(s) A

is differentiable at v &

7.22) a<B&la,8]l c Dom £, & yyla < y < g — f, is differentiable at y &

6 4
(g) . |

Deriv (f,,y) > D) — f,(¢) < f

6 § $

TIn connection with (7.22) it is natural to discuss inverse functions.
We should not expect to attain the level of generality one might hope
for: indeed, the function o +—— i/u on [1,) has no inverse (its

domain would not be a closed set). It seems necessary, therefore, to

1imit the discussion to functions defined on a bounded interval.
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7.23) Def f, is one-to-one <

6
6(&) = fﬂ(B) —> a =R) .

> ¥avB{e ¢ Dom fﬁ % 8 ¢ Dom f6 &

T

7.24) Dom f6 = [yl,ye] & f6 is one-to-one —=

agévws(fé maps a to B <— gﬂ maps 8 to @ ) .

Proof. Let fﬂ = 5fo , and assume that Dom fO contains no

unlimited elements. Nothing guarantees that f. 1is one-to-one; it

O
may well happen that fo(r) = fOLs) for some r and s with r~s

but r # s . This difficulty can be circumvented, however, by removing

from £, all ordered pairs <r,fo(r)> such that fo(r) = fo(s) for

some 8 < r . The resulting set f {which exists by bounded separation)

1

is a real function and is'one-to-one; using injectivity of f6 and
f

boundedness of Dom fO , 1t 1s easy to see that 6fl = 6f0 = g

Let, g, be the inverse of fl —— that is, the set {<s,r>: <r,s> ¢ fl} .

Again by injectivity of f, and boundedness of Dom fl -4 is &

§

real function. For al1 o and £ we have

f, maps o to B <— wris(re a &se B8 & £ (r) 5)

§

1

s HrEs(r e o & 5 ¢ B & gl(s) r)

< — 6gl maps B to o . H

7.25)  Def fgl = gﬁ <—— vavs(f6 meps a to B <

> gﬂ maps B to o )

otherwise g6 = 40 .
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7.26) Dom f{ = [Yl
is differentiable at o & Deriv (fé,a) # 0
-1

§

;Ye] & fﬁ is one-to-one & vy, <o <7, &

-1
> £, is
§

f

8

differentiable at f,{a) & Deriv (f

‘ fyla)) = I/periv (fé,u) .

Proof. Let deriv (fd,a,fo,g) , so £ # 0 ; construct £, and
g. 2s in the proof of (7.24), so {g = 71 . Ir s e f (a) &
1 , 1 Y% 1€ %
€ Dom.gl_& 5, # 5, > then .gl(sl) € o &
&1 18 ls

b oo (s) # gy(s,) , 0
that (1) (g)(5))-1,(g (s,))) /(g (5)) g (5,)) e£ . Since £ (g (s)) =s,

¢ Dom gl & s

1

2

8. € fﬁ(u) & s 5

(52) € o & gl(sl) ¢ Dom f ) ¢ Dom ¥

1
and fl(gl(SE)) = s, , it follows that (gl(sl):gl(sg))/(sl-SQ) e 1 /¢

Therefore deriv (fgl,fﬂ(u),gl,i/g)

Integhation
We turn our attention now to integration and the fundamental theorem

of calculus. First a uniqueness condition:

7.27) Dom g6 = Dom h6 = [a,8] & yyly € [a,B] > gﬁ and hﬁ are
. aifferentisble at y & Deriv (85y) = Deriv (n;y)) &

ay(y ¢ [a.,B] & gé(Y) = hﬁ(Y)) — g6 = hﬁ

X,

Proo4. By (T7.9) and (7.10), the function gé— h{ has derivative

. u
at every v € la,B8] . By the mean value theorem, gﬁ-hﬁ is constant.
Since gg and h6 are equal at a point, they must therefore be equal

everywhere. ”

The construction of the infegral is contained in the proof of the

following proposition.
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7.28) o < B& [a,8] c Dom fé-——-> Sgé(Dom 86 = [a,8] & vy(y € [o,8] >

ig differentisble at vy & Deriv (gﬁ,y) = :f'6

& (v}) & gé(a)r= 0)

Proog. Let fﬁr[a,s] = T, - We may assume that the smallest
element of Dom'fo is ae o and that the greatest is b e B . The
following argument is easily formalized in Rh . Let

a=r ,T

K = b be a sequence enumersating the elements of Dom fO

gLy

in increasing order, and define a function gy ©on Dom fo by setting

A

k A e
g(ro) =0, g(rk) = 3 f(ri).(ri_ri—l) for k = 1,...,n . If
i=1l

0<j<kzxn, then {rk—rj)'Mln {fo(ri): j < i<k}« go(rk}—go(rj)

5_(rk—rj)'Max {fO(ri): J <1<k} . It follows that &, is a real

~

~ ~ ~
i if ~ - - .
function and that i rj o then (go(rk) go(rj))/(rk rj) € fﬁ(rj)

Let gﬁ be 6g0 . H

Tt follows from (7.27) that the function g6 ‘constructed in (7.28)

is independent of the choice of fD,.

7.29)  Def I(fﬁ’u’s) =6 gé <—s a < B & [u,ﬁ] < Dom fﬁ & Dom g6 = [g,B]%&

vy{y € [a,8) — g6 is differentiable at y &

Deriv (gé,y) = fﬁ(y)) & gé(a) =0 , otherwise gé = 60 .

Observe that f(fg,a,s) is the function on [a,8] whose value
at vy ¢ la,8] is the real number we are accustomed to calling flfﬁ
The reader should have no trouble proving that this value does not depend
on g (as longas B >y and [a,8] c Dom fg) , as well as other
basic properties of integrals. An attractive feature (not surprising

in 1light of continuity) is that every function defined on la.8] is

integrable.
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Higher derivatives and Taylon's Thecrem
The final topie of this section is Taylor's theorem. We start

with a brief discussion of factorials.

7.30) Def n! = k <—> (n=0 & k=1) v du (u is a sequence &

n&u(l) =1%& Vi(a 5_i < n —= u{i+l) = (i+1)-u(i))

=

5]

o
fl

“u(n) k) , otherwise k = 0 .

The symbol ! 1is unbounded, of coursé; on the other hand, one
can define a bounded function symbol TFactlog such that
Factlog n = (Log n)! . (That Factlog is bounded follows from
Factlog n < Explog (Log n,n).)} It follows that if Ev+l(n} , then

e (n!) . - :

v
Now for a definition and a lemma.
7.31) Def u is a derivative sequence for T, < > u {1y =°f, &
S§ * 6 S f
vi (1 <i<In ug — Dom u = Dom f,) &
S Sﬁ 4
¥i(1<i<In ug s — U36(1+1) =.(g36(i))')
7.32) B > 0 & [0,8) c Dom f{ & uSﬁ is a derivative sequence for f6 &
& (0) = 0) &
€41 (In u 6} ¥i (1< i< In uSé _ Sﬁ 1 (0) )
V"Y(B <y <Bg T (usﬁ(Ln 1136))(.\') 3_6) — wi(0 <y < g —>
£ (y) > 0)
Proog. Let us write f6 fg fég),...,fén) for the derivative
sequence 986 . By assumption, EV+an) .
fﬂ_('b”) = fg('b') = .= fén“l)(b") =0 , snd fén)( ) >0 for all «y

~

to the right of 0 and sufficiently close to 0 ; we are to show that

£ thas this last property as well.

§
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The sequence qsé is represented by some sequence of real

functions fo,f

end e #0-, then fy(r)te > 0 for all r in Dom fy such that

l""’fn . Tt will suffice to show that if e > O

b , where b is some fraction representing 8 .

1A

0<r
Choose & noninfinitesimal positive fraction. d small enough that
~ ~ A ~ 1 2“ Ll l ~
dr (1+o+ ST D+ ¥ Ej-bn) < e ; this is possible because Ev+l(n) .

Define a new sequence of real Tunctions go,gl,...,gn g8 follows:

Dom gy = Dom fnmi , and for all’ r in the appropriate domains,

gylr) = £{r) +ad,
g{r) = £, 4(x) v a+ar,

_ 1.0 g T L a2
gg(r) fn—2(r) d +dr + 5y dr
g {r) = (r) Ya + dr;...; e

n 0 n! '

Since 6f0""’6fn is a derivative sequencelfor 6fO = fﬁ , it follows
that 6gn,ﬁgn_l,...,ﬁgo is a derivative seguence for 6gn .

lThe formula i < n — yr{r ¢ Dom g & 0 ;_r ;_b —_— gi(r) . 6)
is bounded; let us show that it is inductive in 1 . Since
fn) = 4t > O between % and g and since 4> 0 but d £ 0 , it
follows that £ ; 6 between 6 and b . Now suppose the same is true
of 8 » where 0 <1 <mn , and consider Bi47 * Since [6,5] c Dom 6gi+1 .
the smallest T such that 6 ;_ro and Ty € Dom Bi41 is necessarily
infinitesimal; since ﬁfn_i_lfa) =0 by hypothesis, it foliows that

(r.}~4d , s0 in particular g. (r.) is positive and noninfinitesimal.
0 i+l 70 ;

841
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Now fe; = (48;,1)" >0 between O and B8 , so by (7.21) 4&,,

" is nondecreasing on that interval. Thus >0 between O and b

Bi+1 .
By bounded induction, g, 5 0 between 0 and b . On this
interval, f +e > g ; hence the proof is complete. ||

With (7.32) in hand, Taylor's theorem becomes straightforward.

A1l we lack is the definition of the Taylor polynomial.

7.33)  Def P(fﬁ ’“Sﬁ) i <— FodB(a < 0 < 8 & Dom £, = [o,p])

gSé is a derivative sequence for f6 & €v+l(Ln gsé)
Dom g6 = Dom f6 & HYS (In Van = In u36 &
Vil < i < Invg, > Vg, (1) = uSﬁ (B /((1-1)1)7)

va{o € Dom gé —_ gﬁ(a) = Polyvalue (VS&,G))), otherwise g6 = 40

~

Note that if Ev+l{i) , then ((i-1)!) is limited, so the existence
of Vg, in (7.33) presents no problem.

We are now ready to state Taylor's theorem. For simplicity, we
are considering only Taylor polynomials centered at ﬁ =0 3 the

results extend easily to other values of 4 .

7.34) o <0<p & [a,8]c Dom f{ & u is a derivative seguence for f, &

S4 §
€ 41 (LD uSﬁ & yy(y ¢ [a,B] —= |(u36(Ln 1136))(\()1 < &)
anst In ug, & vi(lf_i<Lnu36—>an(i)='6)&

(Ln 1 6) =7 — Vy('y ¢ [a,p] —

lf6 -(p(£,, Ugg [1,In ug = -11))(y) |/| Polyvalue (WS)L’Y”

< g/{(In usﬁ—l).) )
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Proof. In something more nearly resembling English, the assertion

. . (n+1)
-is that if f,,f},...,T

§°°6 §
bl

§ defined in some interval around 0 » and if g6 ig defined in'that

is a derivative sequence for a function

interval by & (1) = f6(6)+f'(~6)-Y+f(2)(6)w2/§+...+fén){6)-wrn/(n!)~ ,

§ 6

+ ~
then |fg(Y)-gﬁ(Y)|/|Yn'1l < £/({n+1)!)” , where £ is the maximum
value attained by |fén+l)[ .
Define a function h on [a,8] by

h{y) =¢g (Y)+E'Yn+l/({n+l)3)~-f (y) . We know that fé has n+l

§ § §

derivatives, and the polynomial g (Y)+g-yn+l/((n+l)!)~ certainly
. . . . . (n+1}
does, sc there exists a derivative sequence hfshé,-..’hé . It
is easy to check that hﬁ(ﬁ) = hé(a) = ... = hén)(ﬁ) =0 eand that
+ + ~ ~ ~
hén l)(y) = g_fén l)(Y) >0 . By (7.32), h6 > 0 to the right of 0O .

This gives (fé(y)—gﬂ{Y))/y < g/((n-!-l)!)~ to the right of 0 .

The lower hound on fﬁ_gﬂ ,- and the bounds to the left of D , are

established similarly. “
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§8. Funthen Propenties of Real Numbeis

In this section we extend the results of the preceding sections;
in partiéulér, we discuss rational, slgebraic, and transcendental num-
bers and decimal expansions. If the reader finds some of the results
here less appealing than those in the earlier sections, it may be
because the correspondence with classical mgthematics is less close.

To increase readability, we have opted for a slightly less formal style
of presentation than that to which we have grown accustomed; for
instance, if f 1is a polynomial and ry and rs are fractions we
shall take the liberty of writing f(rl+r2) rather than

Polyvalue (f,rllre) . It should be clear that all of our results can

]

be formalized in our current theory Rh .

Natural and rational numbess
One of the interesting features of the number system emerging in
Rh is that we have several choices when it comes to defining natural
humbers. The real numbers include 'B;i,..., and n for all n such
that Ev(n) , and these may appear to be the obvious candidates for
the natural numbers. On the other hand, if we really expect a number

to be "finite", then it should satisfy not only £, but also

Ev+l’€v+2"" . It turns out that for many purposes the definition
8.1) Def o is a netural number <——> @n (5v+1(n) B o = Z)
makes good sense. We already know, for instance, that Ev+l(n)

is required in order for polynomials of degree m , or even the notion

of raising a real number to the nth power, to behave properly.
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Cn the heels of {8.1) follows the definition

8.2) Def g is rational <—- H0 B (ul and o, are natural numbers &

= Vg = -
(8 al/a2 8 ul/aa)) s
or equivalently

§.3) B is rational <— gr (re B & €41 {Numer r) &

€ a1 (Denom r)) . ”

The real number 2 , which exists by (5.52), is irrational; in fact,
it is irrational in the strong sense that it is not represented by any
fraction a/b with Ev(&) & Ev(b) . Indeed, assume such a repre-~

sentation, with a/b in lowest terms. Then a2/b2 = 2+4 for some

infinjtesimal 4 , s0 a2 = 2b2+db2 . But db2 ig infinitesimal and
a2 and 2b2 are both integers { fractions with denominstor 1), so
it must be the case that a? = 2b2 . It follows that a 1is even, then

that b is even, & contradicticn.

It is admittedly a bit disturbing that the rational numbers, accord-
ing to (8.2), are not cofinal in the ordering of the real numbers:
ifqe o (n) &a > 7, then o is simply too big to be rational. It
seems prudent to avoid these dangerous outer reaches of the number line
and to restrict our attention to more manageable numbers, say in the
unit interval.

Can we use a cardinality argument to prove the existence of
transcendental nurbers in the unit interval? First we must decide what

this means. An algebraic number should be a root of a pclynomial whose

coefficients are natursl numbers and whose degree is finpite. That is,

the coefficients should satisfy ¢ + and the degree should be subject
v
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to even further restriction. With these agreements, we can answer

our question in the affirmative; to do so requires a few more facts

gbout polynomials.

Roots of polynomials

Let f(x) = xn+an lxnh1+...+alx+a0 be a monic polynomial

~

(strictly speaking, a sequence of fractions whose last term is 1),

and let b be a fraction. Let f  Dbe the monic polynomial

b
n-1 n-2
= + +iae +
fb(x) x c _oX +c1x cq where
c. = T +3, b2+a bta,
0 n-1 TttT3 2 1
n-2 n-3
= + +...+8_ b+
¢y b ah—lb a3b a2 .
= b2+a b+a
cn—3 n-1 n-2 ?
= -+ N
Cheo T P*E

If f dis not a monic polynomial, or if f is the monic polynomial
1, let fb be the zerc polynomial. This defines a bounded binary
function symbol (the arguments are f and b); the idea is that fb{x)
is the quotient when f{x) is divided by x-b . In fact, let us

establish

8.4) f is a moniec polynomial & b is a fraction ——>

f(x) = fb(x)'(x—b)+f(b) .
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Proof. First let us understand the statement. The conclusion
of (8.4) is a polynomial identity: the assertion that two sequences
coincide. ~The right side, of course, is the polynomial that resﬁlts
when the fraction f(b) 4is added to the constant term of the poly-

nomial product (%} (x-b) .

T

Now that we know what we are to prove, we proceed by bounded

~

induction on T . (The formula 44 bounded.) Let f(x) Ybe

n-1 n-2
b's +a x +...+a_xta. , so that

n-l 2 1
1) £(x) = T(x) + x + &
and
2) , f(b) = cq -
Note also that
3) fb(x)-x = fb(x) -cy -

Certainly f < f , so by the induction hypothesis,

L) P(x) = T, () (x-D) + £(b) .

Combining threads, we have

~

£(x) = £f(x)-x + a, (by (1))
= 2 (x) % (xb) + 2(b)x + 8 (by ()
= (fb(x)uco)-(xnb) + cgrx + a8 (by (3) and (2))

1

fb(x)-(x-b) + (e, btay)




by (2))

= £ (x)(x-b) + £(b) vy (1)) . |
- If Bo,...5b

k

is a sequence of fractions (that is, if b' is
a sequence of fractions and In b'

k) , then we can iterate the
above procedure to obtain the polynomial

T . This is another
bl'”bk
bounded binary function symbol; the arguments are the polynomial f
and the sequence b' . The analog of (8.4) for f is
b,...h
1 k
8.5) f

is a monic pelynomial & b

1,...,bk is a sequence of
fractions —>

(x) = fbl-.'bk(x)°(x-bl)-(x—b2)...(x-bk)
+ fbl._.bk&l(bk)-(x—bl)...(x-bk_l)
* fbl...bk_z(bk—l}'(x_bl)'"(x_bkn2)
F .
+ fblbz(b3)-(x-bl)-(x—b2)

+ £ (b)) (x-b,)
b, 2 *=0

v o) .|

Tt should be clear that (8.5) can be formulated in our theory; the

proof is by bounded induction on the sequence b' , using (8.4).
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8.6) f is a monic polynomial & bl,...,bk is a sequence of fractions &
vi (1< i<k —> [f(bi)l < d) eViVi (1 <di< J<k—
o0, | 2)”
b,-b,| > e > 0) —= |1 ()] < (= 4.
i ] bl...bk_l k e

Proof by bounded induction on Xk (really on b') . If k=1,

the assertion is |f(b.)| < d , which is part of the hypothesis.

1

For the induction step, we have

f {v, )-f (b, )
R T e A e
1 b ()} = B, Db
17" g1 | K k-1 |
(by (8.L) with fb e (bk) and bk-l in place of
. 1 k-2
of f{x) and b)
k2?2 k-2
5 2,57
(= -a+ (e) d

Our objective at this point is the theorem that a polynomial f

whose coefficients are real numbers and whose degree satisfies €41

can have at most Deg f roots. Here is a preliminary version:
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k K- y
8.7y f(x) =x ta X l+...+a0 is & monic polynomial & Deg £ = k &

b. is

(k) & vi (0 < i< k-1 —> a, is limited) & b ,....by

E
v+l

a sequence of limited fractions & ¥i(l < i <k —> f(bi)~0)&

vivi (1< i< j<k > by f’bj) & b is a limited fraction &

¥i (1 <i<k—> b, # b) —=> £(b) # 0 .

Proof. Let d be the largest value of any |f(b.)|, 1<1i <k,

and e the smallest value of any |bi—b | »1<i< i<k . By

j m———
hypothesis 4@ ~0 and e # 0 . By (8.5),
£f(p) = £ (b)‘(b—bl)...(b-bk)
1%k
+ f (b, ) (b=p,)...{(b=b )
bl-"bk—l k 1 k-1
+ ..
+ (b=
£, (o) (b-b))
1
+ .
f(bl)
Now £ 5 (x) is a monic polynomial of degree 0O , namely 1 .
1°" "k

Since b-b # 05- .. 5b-by £ 0 , and Ev+l(k) , the first term in the

above sum is not infinitesimal. But by (8.6), we have

o , 5 k-1
MNoca, in )] <= dpen, |1 (b )] < (D) -a, and
1 1 k-1

all of these numbers a4e infinitesimal. Hence every term other than

the first is infinitesimal, and £{b) # 0 . ||
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0f course, the assumption that { is monic is easily eliminated
at this point. Also, the result can be reformulated in terms of the

sort Sa as follows:

8.8 T i < 1< — i =70
) €41 (Ln SIL) & Vi (1 < i< In U, > Polyvalue (fS)L’quL(l)) 0) &
¥ivj (1 <1< J < In —_— i > In <
w §lciey Ry Ug, (1) # g, (3) S
f .
The existence of transcendental numbeirs
We are now ready to tackle the problem of the transcendental
- numbers. What we can prove is that if the degrees of our polynomials
. £ . s s
are required to satlsfy‘ ?v+2 and the coefficients Ev+l , then most
numbers in the unit interval are transcendental. To mske this precise,
let m be such that ev(m) &= Ev+l(m) , and consider polynomials whose
degrees are at most Log m and whose coefficients are integer fractlons
-

between -m and m ; these polynomials include all those previously
mentioned. All such polynomials can be listed in a sequence in such

a way that each T appears Deg f times, and the length of this

sequence , say M , satisfies EV(M) . Let =a be the set of fractions
1 2 M-1

{0 .1} ; ncote that each of these fractions represents

s'ﬁ ’I\_f[- R B
a different real number. For each of our polynomials f , let Z(f)
be the subset of a with cardinality Deg f whose elements are those

Deg £ elements of a at which the value of f is smallest in absolute

1

value. By (8.8), at most Deg f of the numbers 0 s 3 »e+esl can

satisfy f£(x)~ 0 ; hence all such x are elements of Z(f) . Tt follows
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that every algebraic number among O, %—,...,l is in Z(f) for
some f . But we can form the wmion over ail f of the sets 72(f) ,

and its cardinality is at most M , by the definition of M . There-
fore at least one of the M+l elements of a is transcendental. By
replacing M with larger numbers in the construction of a , one can
easily obtain @ sequence of transcendental numbers of any degired
length satisfying e, On the other hand, every sequence of diétinct
. algebraic numbers has length at .most M_; in fact, by replacing m

(and therefore M)} with smaller numbers, one can see that the length
of a sequence of distinct algebraic numbers must always satisfy €op1

Let us summarize.

]

8.9) Def a is algebraic <—> Hf3n(5v+2(Ln fﬁn) & vi (1< i< In fén

rd

ke (e, (k) & (£g,(1) = Kvig (1) = -K))) & Polyvalue (fg, .0) = 3 .

8.10) e (M) —> @y, (Inuy, =M& vivj (1<i<jcM—>
US}L(,i) # uS!L(j)) B oyi(1<i<M—> SiuS)L(i) <1&

’(uSn(i) is algebraic)}) . H

8.11) vwivd (1 <1< J<Inu, —> u, (1) # ug, (1)) &

vi(l<i<Inu

oy T USn(l) is algebraic) —>

eys1 (In ugy) -l

The proofs used above to establish (8.10) and (8.11) are actually

rather simple examples of cardinality arguments that we shall investigate

more thoroughly in Part Three.




—-1kh5-

Decimal expandions
With (8.1) as motivation, we define what it means for a seguence

of fractions to converge to a real number.

8.12) Def u converges to o <—> u is a sequence of fractions &

e (Mlu)&Vi(ig_hluEﬂe (i} — u(i) € a) .

w1 v+l

Now we discuss decimal expansions of numbers in the unit interval.

8.13) Def u is an m-ary expansion of g <—> m> 2 & u 1is a

sequence of fractions & Vi (1 < i < Inu—> Hk (k «<m & u(i) = k)) &

A A A

u(1) = 0 & Polyvalue (u,l/m) ¢ a .

:

8.14) w is an m-ary expansion of o —= D < a g_i .

Proof. TEasy formalization of the argument

n . n 4 1B i
0= 3 om <} um <} (mlm <1 i
i=1 = i=1

8,15) u 1is an m-ary expansion of a & e 4 (n u) —>

— Polyvalseq (u,1/m) converges to a .

Proof. It suffices to show that if = Ev+l(i) but i< Inu=n,

Aan ~ A

then Polyvalue (u,l/m) - (Polyvalseq (u,1l/m))(i) is infinitesimal.

n-1 \
. s . -J =i+l =
This quantity is nomnegative but at most ) {(m-1)m =y —m,n+1.,
J=i

which is infinitesimal because a1av+l(i) & - €v+1(n) &m> 2. H

Now for uniqueness and existence theorems.
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8.16) sv(m) & u and v are m-ary expansions & o &.ﬂ€b+l {(In u) &

€L {(Ln ) >yl (i >1 &€ (1) ——> (i) = v(1)} v

v+l

(e, (3) & Vi (1<i<cd—> ulE)=vli)s
(1) —= u(i) = (m-1) &

(1) —

((v(3) = (¥ & Vi (1> 3 be

0) v (u(f) =v(HL & Vi (> & ¢

(m=-1) & u(i) =0))} .

v{i)

v+l

v(i)

(i) ,

then by (BLNP) there is a smallest Jj such that u{j) # v(Jj) . We

Proog. If u and v do not agree on all i with €,

~n oA A A

may assume u(j) < v{(j) . If u(j)+l < v(Jj) , then Polyvalue {(u,l/m)

N AR -j+l

differs from Polyvalue (v,1/m) by at least n Because

-3+
Eu+l(j) , though, m I*L 15 not infinitesimal, so this is impossible

A An A AR

since Polyvalue {(u,1/m) and Polyvalue {v,1/m) represent the same

~m

real number. Hence u(j)+l = v(j) . Suppose i is the smallest number

> 3 such that either wu{i) # (m-1) or v(i) # 0 . Then

ann ~an —i+
Polyvalue (u,1/m) and Polyvalue (v,1/m) differ by at least m i+l :

(1)

for this to be infinitesimal, it must be the case that e

Thus vi (1> 3 &e . (i) —> u(i) = (1) & v(i) =0) . |

v+l

8.17) Def u 1s an m-ary approximating sequence for r <—
m>2&r is a fraction & u is a sequence of fractions &

vi(l<i<Inu—> @k (k<mé&uli) = k)) & u(l) = 0 &
¥i (1 < i < In u — (Polyvalseq (u,1/m)}(i) <

A AR ~ o

<(Polyvalseq (u,1/m))(i) + (Powerseq (1/m,u))(1)) .

A A A~

8.18) m>2 & r dis a fraction & O0<r <1

> du (u is an m-ary

approximating sequence for r & In u = Logn)..
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Proof. By bounded induction on n . ||

- 8.19) wuw and v are m-ary approximating sequences for r &

Inu=Inv— u=1v. H

-~ 8.20) Def Approxseq (m,r,n) = u <—> u is an m-ary approximating

sequence for r & In u = Logn , otherwise u=1 .

A

Since Ln u = Logn and Sup u,i_(m—l) , 1t follows that the function

symbol Approxseq 1is bounded.

~ ~ ~o~

8.21) m>2&r is a fraction & O0O<r<lé&reun &-1eu(n)

>

Approxseq (m,r,n) is an m-ary expansion of a .

Proof. If i< Logn & -'Ev+l(i) , then the difference between r
ann —it
and (Polyvalseq(Approxseq (m,r,n}) ,1/m))(i) is at most m i+l .

- which is infinitesimal. H

Decimal expansions give us a new technique for forming sets of

(n) >

real numbers. For instance, take n such that Eu(n) e R

and let a be the set of all fractions that are sums of ternary

expansions of length n all of whose coefficients are O or 2 .

Then 4z is the Cantor set.
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§9. The p-adic Numbens

The construction of the real numbers in §5 applies mutatis
mutandis to the p-adic numbers as well. For the most part the imitation

is straightforward, and we shall omit some of the easier proofs.

Anothen kind of infinitesimal

As before, we begin with a few definitions involving fractions.
9.1) Def a is a power of p: «— Hk (a = Explog (p,k)) .
. k
9.2) p#0—> (a is apower of p <—> a¥# 0 & Tk (a=p)) . |

. 9.3) Def Val (p,a) =r <—= p is a prime & ({a=0& r = o) v

(a#0& ¥b (b iz a power of p &bla&b-p‘ra&r=l7b))) s

otherwise r =0 .

9.4)  Def Value (p,r) = Val (p,Numer r)/Val (p,Denom r).

9.5) p is a prime & r is a fraction —> Value {(p,r) > 0. “
9.6) p is & prime & r is a fraction — (Value (p,r) = 0 < r = 0). |
9.7) p is a prime & r and s are fractions —>

A

Value (p,r-s) = Value (p,r}-Value (p,s) . ||

9.8) p is a prime & r and s are fractions & Value (p,r)
< Value (p,s) —> Value (p,r+s) < Value (p,s) . |
9.9) p is a prime & r and s are fractions & Value (p,r)

< Value (p,s) —> Value {p,r+s) = Value (p,s) . ||

The symbol Value is bounded; the following symbols are unbounded.
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9.10) Pef r is p-limited <~—> p is a prime & r is & fraction &

Value (p,r) is limited.

9.11) Def r is p~unlimited <— p 1is & prime & r 1is a fraction &

Valve (p,r} is unlimited.

9.12) Def r is p-infinitesimal <——= p is a prime & r 1is a fraction &
Value (p,r) is infinitesimal.

9.13) Def ~{(p,r,s) <— p is a prime & r and s are fractions %

~
r-s 1is p-infinitesimal.

We shall generally write r Np s rather than ~(p,r,s) .

The following properties follow easily from (9.5)-(9.9).

~ ~ ~

g.14) r and s are p-limited -~ -r, r+s, and r-s are p-limited. H

.

6.15) v and s are p-infinitesimal —— -r and r+s are p-infinitesimal. ”
- g.16) r is p-limited & s is p-infinitesimal — r's is p-infinitesimal. ”
- 9.17) p is & prime % r is a fraction —> r ~y T |
. .18 rYe~ 8§ —> 5~71,
w 5.18) 5 o7l
- 9.19) r~ s&s~ t-—>1r~ t.
el P P ”
W:“Vf"?"" ) ~

~ ~ ro4r_ o~ +s5_ .

9.20) T3 " 51 & r, p Sp T Fytrpy vy 8yts, i

j; 9.21) Ty and r, are p-limited & r, ~D 8, & r, ~5 8, =™

Ty T~y 51755 -
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9.22) r. is p-limited & -1{r2 is p-infinitesimal) &

1
T o 81 & r, “p 5o — rl/r2 " 31/52 Sl
9.23) ] is a prime & .r is a fraction —— {r is p—infinitesimal S

1/r is p-unlimited). ||

A theony of p-adic numbens, and an interpretation

The most obvious way to parallel the construction of the real
numbers in the p-adic case would be to adjoin a new sort for each
prime p . Actually, it is possible to handle the p-adies for all p
with a single sort p ; the secret is to let each p-adic numer contain
a piece of information indicating what p is. Pending a convention
to be introduced later, %e use Greek letters with the subscript p
for variables of sort p . The sort p comes equipped with the following
accessories: a function symbol Prime of type (p,n) ; a predicate
symbol e of type (n,n,p) (we write r €p ap rather than e(p,r,ap)} :

and three new nonlogical axioms:

9.24)  Ax Prime (ap) =p—> p is a prime & gr (r is a p-limited

fraction & vysyg (s € <= g=p&k s~ T)) .
VEva q up q=Dp P

9.25) Ax p is a prime & r is a p-limited fraction —>

Pri . = & .
Hap ( rime (up) P r ep ap)

. & - .
9.26) Axrepof,p I‘epﬁp<———-‘> DLP po

Let R;V be the extension of the theory RE“ obtained in this

way.



Inasmuch as this is not just a simple equivalence-class con-

struction, it must be checked that Rp is interpretable in Rh or

in Q‘u + Actuwally, it is not difficult to extend the interpretation
of Rh in r(:):u constructed in §6 to an interpretation of R in
Qu . Define pr <—> mpar (p is a prime & r is a p-limited fraction %
= < > = o > T s ) = = = P s ~ N
X p.r>) , x( p)Iy #p (Proj x Proj,y = p & Proj x o Proj,y)
3 = 3 = P i ~ i .
Pr:LmeI(x) Proqlx , and eI(p,r,x) <— p = Proj.x Er P Proa‘2 X

Conditicns (3.1)=~(3.5) and the interpretations of (9.24)-(9.26) are

easily checked.

AMuithmetic of p-adic numbers

Many simple theorems follow immediately from axioms (9.24)-(9.26).

]

For instance, by (9.24),

9.27) r € ap ——> Prime (up) =p. |

~

.28 Def O = o <———> is a prime & 0 € a )V
9.28) T 05 =p % (p P &0 ¢, p)

(#(p is a prime) % O €5 ap) .

9.29)  Def p(p,r) =p Otp*: >p is a prime & r is a p~-limited fraction &

re o s Otherwise o =0 .
P p P P

Now for the promised notational convention. When no confusion
is likely, we reduce use of the cumbersome subscript Jp and function
symbol Prime by writing onp ,Bq,. .. for p-adic numbers whose primes are

PsQse.. . A formula of the form D[ap,p] can be taken to mean

I)[ap,Prime (up)] ; thus the definition
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9.30) Defo_ +B. = ¥
Py Py P Py

~

<—> p.=p,.=p., & Arids(r €
12 73 1 Pl

se¢ B, &r+se_ y_ ) , otherwise y_ =0

is understood to mean

<

Def ap+ 8 > Prime (ap) = Prime (Bp) = Prime (Yp) &

p p'p
gras (e(Prime Eap),r,ap) & ¢ (Prime (Bp),s,Bp) &

- e (Prime (Yp)’r+S’Yp)) , otherwise Yo =0, .

The unigqueness condition for (9.30) follows from (9.20).

- 9.31) Def —a = B <—> p.=p, & Ir (r e o & -r ¢ B} .
: PP R 12 Py Py Py P

:

9.32) Defa B = y_  <—> p=p=p, & drds (r e a_ &

se o &rse Y ) ,otherwise y_ =0, .

P2 P P3 P3 - 3 °
9,33) Defa_ /R, = y_ <> P,=P,=Py & ((g. #0_ & Urds(r e oy &
Py Pp P Pg P Py PP
se_ B & r?s e y_ ))vi(p_ =0. &y_ =0_1)), othervise
Y =0, .
2
P3
The field axioms follow immediately. After recording a preliminary
theorem, we can now define the p-adic valuation on the p-adic numbers.
9.34) - r ~ s —> Value (p,r)~Value (p,s) .
-
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Prood. By (9.22) if r and s are pminfinitesimai; other~

wise, by (9.9), Value (p,r) = Value (p,s) . |

9.35) Def Value (ap) £ <

> gr (r €5 %y & Value (p,r) e &) ,

otherwise £ = 0 .

The properties corresponding to (9.5)-(9.9) are easily verified.
Analogous to (5.32) is the following result, which says that
if p is a f{nife prime, then every p-adic number contains a

Uv—fraction.

9.36) 1D 1is a prime & Ev(p) & r is p-limited —>

s {s is a Uu-fraction & s Np r) .

~

Proof. If r  is p-infinitesimal, let s be O . Otherwise,
here is the idea. Write r = ipj-a/b , where pj iz limited and
noninfinitesimal, a > 0 , b > 0 , p*é , and pfb . (Here J may be
positive or negative. Note that pj is limited and noninfinitesimal

— Eu+l(1j|)') There exists an unlimited power of p , say D ,

4|3
such. that pm lJI € Uv . Let pm-k be the greatest multiple of
m . m . m
- P not exceeding a , and let p -4 be the greatest multiple of p
. J m m :
not exceeding b . Let s be +pY-{a-p 'k)/(b-p -2} . Then s is
. L m m m
a Uv-fractlon since both a-p *k eand b-p *& are less than p . To

show that s ~P r , note that

il s

j a-p -k m+ a-4-b.k
ser = +(p) BRIE gl By o upit B
b-p & be(b-p +4&)
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The exponent on p here is at least m+] (maybe more); since pm
. . tj| . " . m+j .
is uwnlimited and ©p ig limited, it follows that D is

unlimited and that s-y is p-infinitesimal. ||

‘Infinite primes do exist, as a Fuclid-style argument shows (9.37);
if p 4is infinite, the p-adic numbers turn out to -be nothing more

than the integers mod p (9.38).

9.37) @ (p is a prime & -'Ev(P)) .

Proof. 1If every prime satisfied E, ° then the primes would
form a sequence u , and the number (Iu)(In u)+l could have no
prime factors, contrary to the fundamental thecrem of arithmetic

]

(itself an easy consequence of (BLNP)). |

[}
M

R
.

9.38) p is a prime &-wsv(p) —_ Vupﬂ!i(o <i<p-lé

Proof. Clearly the p-adic numbers p(p,a) y p(p,i),...,
p(p,(p—l)ﬁ) are all distinct; it remains to show that every fraction
a/bh that is p-limited and not p—infinitesiﬁél is p-infinitely close to
one of p(p,i),...,p(p,(p—l)A) . Since -1sv(pl) , neither =a nor
1 is divisible by p . Let k be the unique number among 1,eeesp-1
such that bek = a (mod p). Then (a/b)-k = (a-b-k)/b is
p-infinitesimal; that is, a/b is p-infinitely close to k . I

Tn §8 we discussed decimal expansions of real numbers. Analogously,

p-adic numbers have pjadic expansions. We list the definitions and

theorems, omitting the (easy) proofs.




9.39)

9., 40)

9.hk1)

9.52)

9.43}

9.h4)

9.L45)

9.46)

9.47)
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Def u p-converges to aq «w—s p=gq & u is a sequence of

fractions & = ev+l(Ln w) &vi (i<Inuzg ﬂev+l(i) >

u{i) €4 uq) .

Def u 1ig a p-adic expansion of 'aq «——> p=g & u 1ls a sequence &

vi{l<i<imu > gk (k < p. & u{i) = k)) &

Polyvalue (u,p) €q %

u is a p-adiec expansion of ap & me (In u) —

v+l

Polyvalseq (u,p) p-converges to o |

gv(p) & u and v are p-adic expansions of o & “€v+l(Ln u) &

(In v) & 1 >1lé&e (1) —= u(i) = v(1) . “

TE 4L v+l

Def u 1is a p-adic approximating sequence for r <—>
r is a fraction & Value (p,r) < 1 & u is a sequence of fractions &
ﬁ’i(lf_iiLnu—éEk(kcp&u(i)=k)&

Value (p,r:(POlyvalseq (u,%))(i)) ;_(Powerseq (i?%,u))(i+l)) .

1 — su (u is a p-adiec

|A >

r is a fraction & Value {p,r)

approximating sequence for r & ILn u = Log n) . il

u anda v are p-adic approximating sequences for r &

Im w = 1In Vo—s u =V . H

Def p-Approxseq (r,n) = u <— u is a p-adic approximating

sequence for r & Im u = log n , otherwise u=1.

Value (up) g_i & v €, @ &_1Ev(n) ——> p-Approxseq (r,n) is a

b

p-adic expansion of o, - I
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Mone sonts; Hensel's Lemma
As was the case with the real numbers, we can introduce additional

sorts for sets, functions and sequences. In probably the most conven-

ient formulation, each set of p-adic numbers xép has a prime
Prime (Xép) associated with it; only p-adic numbers ap with

i o = Pri .
Prime ( p) ime (xép) can be elements of Xep We car even

introduce sorts for mixed concepts such as functions from the real

numbers to the p-adic numbers or vice versa. One example of a set

0

of p-adic numbers that can be formed is the set of all up such that
Value (ap) € %, , vhere x  is a given set of real numbers. Every
- p-adic set is "p-closed", and every p-adic function "p-continuous'. .

The skeptical reader should have no difficulty providing his own details.

Let us write Sp for the sort "sequences of p-adiec numbers'.

Then each sequence VSP is determined by a2 prime p and a sequence
u of fractions; we write VSp =Sp Sp(p,u) (ef. (9.29)). We can
define a function symbol Polyvalue of type (Sp,p;p) . Just as in
the real case, Polyvalue (vsp,ap) means what one expects it to mean

%% provided €41 (In YSP) -- and provided, of course,

- Prime (VSP) = Prime (ap) . If vsp is the polynomial

e

- K . . .

- (uo)p+(ul)px+...+(ak)px , then Derivpoly VSp is the polynomial

- - " k-1 : :

- (al)p+p(p,2)-(u2)p-x+...+p(p,k)~(ak)P-x . We conelude this section

- by giving a formulation and sketching a proof of a standard tool in
p-adic analysis, namely Hensel's lemma.

-
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9.48)  Prime (gsp) =1 & Ev+1(Ln ?Sp) & Vi{l < i < Im ?Sp —

Value (qsp(i)) 5_3 ) & Value (ap) g_i &
Pol 3
Value(Polyvalue (qsp,up)) <1 &

~

Value(Polyvalue(Derivpoly usp,ap)) =] ——

dR_(Val il - 3 - )
Bp( ue (BP) <1 & Value (Bp ap) <1 & Polyvalue (qsp,sp) OP)

Procd. If -wsv(p) » then Value(Polyvalue (usp,up)) , being
a power of p less than 3 . mpgt be D s Whence

Polyvalue (gsp,ap) =0 , so that Bp = aP satisfies the requirements.

p

Assume therefore that Ev(p)'

There 15 a sequence f(x) = cO+clx...+ckxk of p-limited fractions

such that Sp(p,f) =1 Then the seguence

Sp*
k-1 . s
! = + +, ..+ t = 3
1 {x) c *+2c, % ke, x satisfies Sp{p,f') Derlvpoly'gsp
There is also a p-limited fraction a such that p(p,a) = o

By hypothesis, Value (p,ci) ;_1 for 1 =0,...,k ;

Value (p,a) ;_i 3 Value (p,Polyvalue (f,a)) <1 : and

Value {(p,Polyvalue (f',a)) = 1 . That is, the exponent on p in

each c, and in & is nonnegative, in Tf(a) strictly positive, and
in f'(a} zero.

Assume for the moment that for each n there is a sequence

such that for i = 0,...,Log n we have

i-1

L IEEEL I,

0 < b, < p~1 and Value (P,f{b0+blp+...+bipl)) <P and suchk that

Value (p,bo-a) < 1 . (Observe that the assertion following "for each n"

is bounded.) Then let -1gv(n) . and let Bp be the p-adic number

Log n

given by the expansion b0+blp+... P . _Then the first two

+
bLog n
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of the three desired conclusions about BP are clear, and

Pdlyvalue (QSP,BP) = OP because P—Log T is infinitesimal (so that
. L
Value{Polyvalue (uSp ,Bp); =0) .
It remains to construct the sequence bps...,b . This is
‘ 0*" ILog n
done, as usual, by "Newton's method". First let bO be the unique

number among ©O,...,p-1 such that p divides the numerator of

b.-a ; we write b. = a (mod p) . Then f(b.) = f£(a) = 0 (mod p} ,

0 0 -

so that b0 has the necessary properties. Now proceed by bounded

induction, assuming that for i < Log n we have found bo,...,b.

i
such that Value (p,f(bo+...+bipi)) i'p-i'l —— that is, such that
f(b0+...+bipi) =0 (mod p™l) . Let r= f(bo+...+bipi)/Pi+l ,

so that the exponent on 'p in r 1is nonnegative. Then let bi+1
be the unique number among O,...,p-1 satisfying f'(a)-bi+l.2 -r

(mod p) (this uses the hypothesis f'(a) 7 0 (mod p))}. Since

bo+...+bipl b, = a {(mod p) , it follows that
i
! - +b. = 1! , = -
£ (b0+ bip ) b '(a) bi+l r (mod p) , and therefore
i i+l i+l i+2
! +ouoF . . = -r- : .
that (bo b. P ) by q'P rp (moq p ) But then
mod pl+2 we have
i+1

i i+l i i
+ = ' . i
f(b0+...+bip b, P ) = f(b0+...+bip Y+f (bo+...+bip ) b q P

i i+l
= co o -1
f(bo+ bip Yur-p

=0,

as desired. ”
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- PART THREE

: PREDICATIVE SET THECRY
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§10. Coflections

It is desirable to be able to refer to certain collections of
objects in addition to those collections that form "gets" in the strict
sense of Nelson's theory Qo : the collection of all x such that
Ee(x) , the collection of all limited Uv—fractions, and so on. This
objective is accomplished in this section. By analogy with the well-
known "arithmetical hierarchy", ‘we define, for A = 1,2,..., new mem-
bership relations €(ZA) , G(HA) , and E(AA) , and the notion of a
"Ax-collection", We then 1list several properties and examples of
Ak—collections, as well as a few unsolved problems,

Preliminaries: extend the definitions of ordered pair, ordered

triple {L.1), and cartesian product as follows:

10.1) Def <x ,X

1 2,x3> = <x1,<x2,x3>> ’
Def <Xl,x2,x3,xh> = <xl,<x2,x3,xh>>
- Def <xl,x2,...,xk> = <xl,<x2,...,xl>>
2
10.2) Def a = axa ,
Def a3 = a><a2 s
Def 3,7\= axax_l .




'30.3)  Def x € y(E;) <
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Context will prevent (10.2) from conflicting with the notation for

exponentiation.

New membership nelations
We first define, for k = 1,2,... and A = 1,2,..., Dbinary
relations xe ¥y (Ei) "and x € ¥y (H;) . We use the following abbre-

viations: #xK means ﬂﬁ(eK(x)&E) , and vV xE means

Vx(gK(x) > &) 3 Q“ is § if A is odd amd ¥y if A is even,

and vice versa for QA .

> gqala is a set & yw(w e a > e, 1(w)) &

N ;
aA l)

¥ C & mox. v X g X QKX <X, .X L. ,X> €
- S R e M W - S LA b I

10.4)  Def x € y{ni) <
RESE

—> qala is a set & ywlw ¢ a —> eK_l(w)) &

c & Kx Kx Kx 5Kx <K, 32X, 8 X x>
y__ V 13 2-‘{ 3""JAA l, 23 35"'93{19 €y

The set & +that appears in the first part of these definitions
could well be UK (see {5.2)}), but on occasion it will need to be some-

thing larger. The interesting part of the definitions is the second

part. For instance, let ¥y be {z € Ui: Projl z = Proj2 z} . Then

1
x e yy(3]) < Hlxl<xl,x> € ¥y

1

> xl(x1 e U & x el & x) = x)
> ﬂlxl(xl = x)
{because el(xl) —> X, € Ul)

<« g_(x} .

1
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Likewise, if v, is {z¢ Ui: Log Proj, z = Proj, z} , then

X € yE(Ei) ety se(x) . The point is that by changing the notion.éﬁn
membership (using e(ﬁ) instead of € ) , we have made sets .
(yl and y2) represent collections that are nof sets (the x such”:;”
that el(x) and eg(x)) . The situation can be summarized by saying

that ¢

1 and £, are "Zi—properties"; in these terms, the following

proposition asserts that for « = 1,2,..., EK is a Eguproperty.
10.5)  @ywvx(x e ¥(§]) <—> ¢ () .

Proof. Let y be {z e US: Projl z = Proj2 z} and argue as

above. ”

First among the facts that we shall record about the relations

e(zi) and e(HE

unary function symbol in an extension by definitions of Eu 3y the

) is a useful theorem scheme. Let I be a bounded

assertion is that if a formula B[x] defines a Eg-property, then so

does XK[fx] . More precisely:

10.6) a is aset & vwiwe a > aK_l(w)) >

> (xe a& fxe Y(Ei)))

mzyx(x e z(fy) <

Proo4. Let 2z De {<x1""’XA’X>: x e ak <x1,...,xA,£?> € v} H
Similarly:
10.7) a is a set & vwywlwe a —> EK—l(W)) —_

)

gryx(x € Z(Hi) <—— {xe at fx e y(u
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Let y be the set of all ordefed pairs <k,x> such +hst
k e‘_Uv , X 1is a Uv—fraction, and |x] > k . One checks easily
that X € y(H;) <> x 1is an unlimited Uv—fraction. It then follows
from (10.7) (et £ %be the function symbol Recip) that being an
infinitesimal Uv—fraction is also a H{—property.

The indices k and A that appear in (10.3) and (10.4) are
genetic numbers, not formal terms of the theory. Indeed, (10.3)
aﬁd (10.4) are really whole families of definitions, one for each
choice of « and A , and similar remarks apply to many of the theorems
that follow (including (10.5)}-(10.7)). (Strictly speaking, some of the
theorems below are valid only for 1 <k < u , where we are working
in the theor& 5} s the’reaéon being that the proofs require €, to
fespect multiplication. Of course, if we want a larger « , nothing
prevents us from moving to a stronger au ; see the remarks at the
end of §2.) We shall see at the end of this gection that for many
purposes the superscript g méy be replaced by a formal vafiable k
T+ will then be pbssible to'quantify over k and £héreby egsentially
+0 remove that index from the notation entireiy. Certalinly the more
important of the twe indices is the subscript ) 3 there seems to be
no way to handie all ) at once.

Roughly speaking, k indicates the "height" of a collection and A
its "complexity™. Tha£ is, « describes the size (level of exponentia-
pility) of the collection's largest members, and 3 gives-the number
of quantifiers in its defining formula. Let us now make these ldeas

more precise by investigating the dependence of the relations E(zi)

and e(Hi) on ¢ &nd A .
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Properties of the relations
We examine )} Tfirst. Here the results correspond closely to
standard theorems concerning the arithmetical hierarchy. For instance,
K : K - K .
every Elhproperty iz a 2A+l~property, and every nA-property is a

K
ﬁl+l—property.

10.8) qzyx{x ¢ Z(E Y} «— x ¢ Y(EK)) .

K
A+l A

Proof. Let =z be the set ..

{<x ""XA’X LX> 1 <X e aX. WX%> e ¥ & X

1000 € O3 -l

1’ A+l

K K
10.9) mzyx(x ¢ Z(HA+1) <> X ¢ y(nh+l)) -l

! #
To save space, let us use the symbol for the following
%
"qualization" operation: X is the formula cbtained from the formula

E by replacing Z; with HE . H§ with z; s T

¥  with §° , while leaving all other symbols (including other occur-

is (10.k4), (10.6)*

“  with VK ,» and

: *

rences of # and V ) unchanged. Hence (10.3)
%

is (10.T}, and (10.8) 1is (10.9). The reader may check that the proofs

® *
of (10.10}-(10.19) can be @ualized, so that (10.10) -(10.19) =are theorems

of au . For instance, (10.10)} asserts fhat'every ZE—property is a
- 1* _~property, and (10 10)*
A+l i '

K
ZA+1-property.

asserts that every H§¥property is a

) K
10.10) dzvx(x € Z(HA+1

) <—=> x ¢ y(}}))
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Proog. Let z  Dbe Uk x ¥ . Then

-~ K

' K K K
> ] o SN ’
xe 2l ) VE By Bl FpaXpee ¥y

o JX> € Z

) Kx <X X X> ey
2 A+l TA+L T2 24l

> x e y(15) .|

<

K
>E{x

<<

10.11) HZVX{X € Z(H;+}_} G— 'VKX“:X',}D € y(zi)) .

¢t

X, SH> P €X| senesX, <X, x> € ¥} . ||

Proof. Let 2z be {<x',xl,..., \ 1 \

10.12) zmzyx(x e Z(Ei) comms Fxtex! 1> y(i;)) .

. .‘ +
Proo4. Since y 1is a subset of aﬁ 1 for some set a all of
whose elements satisfy ¢ 100 the set
c -
z. = {<<x',xl>,x2,...,xl,x>: <xl,...,x1,<x',x >> ¢ y} satisfies this

requirement as well; this is because EK 1 respects ordered pairs. Then

K K. K
X ¢ Z(EA) > T Wy X2"'Q§X1<W’XE""’X3’X> ez
K_ 1K K i©
«<—= g x'd le x2...QAxx<<x',xl>,x2,...,xA,x> € Z
{ =~ by the definition of 2z , <—— because ¢ respects ordered
' K
pairs)
Ko K K
<> g o x'y ijKXQi"QAXl<X1""’XA’<X"X>> €y

o gfxl<x' x> y(Zi) -

*
Formulas (10.12) and (10.12) are of course "contraction of

quantifiers." Now we prove the expected theorems about complements,

intersections, and unions.
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10.13) a is a set & ywiwe a—> €, (w)) —>

-1

Hzvx{x € z(ﬁ';) <> (x e a & x ¢ y(z';))} .

o, +
Proof. Let ¥ E_bA 1 ; we may assume that U cb. Let z

> ebl&}{e a & <x

Lre e X, 0¥ { v},

be {<x LX>i <X

1oy 1o n 0%y

Then

-
'f'QAxA<Xl""’XA’X> € Z

x e 2(n}) <> VX

K =K
<« x e a ky xl'foAXX1<X1""’XA’X> ey

:

K K
«c—> x e 8 &1ME X .. 00K <K 5.0l X

10X yE ey

<—> X € a&xdyq;).

We noted earlier that "unlimited Uu—fraction" is a n;—property;
*
it now follows from (10.13) that "limited Uv—fraction“ is a

z;-property. 0f course, it is easy to see this directly.
10.1k)  gzyx(x e 2(2';) <= (x ¢ yl(Ei) & x ¢ yg(ii))) .

Proof. First let N be
{<WX’xx’wi—l’xl—l""’Wl’xl’x>: <xl,...,xx,x> € ¥y & <w1,...,wl,x> € ye}.
By the prenex operations,
X € yl(zg) & X € Yg(zi)

<=—— EKXIElevKXBVKWE'"d;XAQ;WA<W1’XA""’Wl’xl’x> € Zl .

Now use (10.11) and (10.12) and their duals. For instance, if A is

3, then
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a"xlaf‘wlﬁxgv"wea"x?)a“w;wyx A 1% € 2

3 XKWy o 1

K
<> fxlﬂ(wl\f(xev'(we:fx?x o Xy Wy 2%y H X € zl(El)

<> Hxﬂwﬁwi<w

s X, oW X sX>€Z(zK)
2 2211 2't]

(for some 2, by (10.12))

o~ ' K
<> F xl:fwl‘dxxgxg,wl,xl,p € 23(112)

(for some Zy vy {(10.11))

o)

L= E[K.X:LE W <wl,xl,x> € Zh(}'[

*
(for some z), » Y (10.12) )

C— E[KX1<X1:X> € 25(}jg) {for some 25 , by (lO.ll)*)

> X € Z(EK) (for some =z , by (10.12)) . ||

3
10.15)  mzyx(x e Z(Ei) <—— (x € yl(ii)\’ X € ye(y;))) .

*
Prood. Like (10.14); alternatively, use (10.13), (10.14) , and

*
(10.23) . ||

The next proposition says that the cartesian preduct of two

Y;-properties is a E‘;——property.

2

10.16)  gzyx(x e z():';\) — gwlgwe(x=<wl,w2>&wl € yl(zi) & W, € ye(z!;))) .




-168-

Procg. We may assume that both yl and y2 are subseils of

+1 )
&A and that UK c a, First we construct, as a Zi—propertYa the

cartesian product of the Ii—property Yy with the set a . To do

this, let Zl be .

{<x CaX. ,ex ! xMe> <Xjseee X X'> ¢ ¥y & x" ¢ a} ; one checks

SRR \
. K _ K
easily that x ¢ Zl(EA) e gwlgwe(x—<wl,wg>& LA yl(zx) &

w2 e a). Similarly, we can construct =z such that

2

3 K = K
x ZE(XA) <— gleWQ(x < SV Ew € 8k W, € yQ(ZA)) . The

2 1
desired =z 1is then the zg—intersection (ef. (10.14)) of z, and
Z, - I
We now briefly discuss the role of the index ¢ . Briefly, the
greatest generality is obtained at the first level, ¢ = 1 . This is

+
because every Zi l—property is a Ei-property:

10.17)  gzyx(x e a(}}) < x ¢ ¥l §+1))

.o sX_ x> <Log X

Proof. Let z Dbe {<xl,. \ 10

.. 5 LOZ XA’X> € ¥} .
Then

K K K
X € Z(EA) T H K e QK <Ky 5 a0, X € 2

ATa L A

> HKX ...Q§XA<Log X s Log XA’X> €Y

1 1°°

+
> HKl

Wl"'Q;+1WA<Wl""’WA’x> ey
e+l
NI

<> X €Y

It car be seen using arguments of the sort used in proving (10.17)

that the quantifiers in the defining formula of a Ei- or ni—property
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may be restricted to ¢ rather than always ¢
K

o+l EK+2 see

. L 2 5 3
F inst if i
or instance, ¥ E-UE s then v'xla X,V x3<xl,x2,x3,x> € Yy dgflnes

L2 . . . .
.8 n3—property; indeed, it is eguivalent to

2y B, vx,<x. ,Log Log Log x.,,L ‘
v'xlﬂ XY Xy x,»,Log Log Log x OZ X. X> € ¥ .

2° 3
According to our next proposition, z;—properties are not much

more general than E;+l-properties; they can simply extend "higher".

That is, if we have a Z;—property and intersect it with UK+l or

some other set all of whose elements satisfy ¢ - , we get a E;+l—property.
K

10.18) a is aset & ywiwe a— ¢ (w)) —>
K

Azyx(x € z(2§+1) = {x e 8 & X ¢ y(E;))) .

:

Proof. The set

z = {<Log x P WLOE X_ ,X> : X € 8 & <X, 5..-5%, 2X> € YV} consists of

1°" A 1 A
(a+l)-tuples of numbers satisfying e, , and fulfills the desired

property. ||

The reason we bother with the index « at all rather than working
only with the relations E(Ei) and E(Hi} is that we may have occasion
to jump to a larger "universe". For instance, if k > 2 , then all

ordered pairs <w > such that w, € WE(E:) , restricted to certain

1°Y2 1
"aniverse" a , define not a Z§—property but a z;_l~property:

10.19) a is a set & vwwlw e B ———> € (w)) —=

_ k-1
EZVX( X € Z( EA“l) L HW]_EWE ( K=<W

W, € WE(Zi)))

+
W2k W g_aA 1 &

1’2 2
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Proog. Let =z, be the set

1
' +
{<xl,...,xA, <Wl,w2>>: Wy E_aA 1 & <x ,...,xk,wi> € W2} . This is

a-set of {A+l)-tuples of numbers satisfying e (not necessarily

K =2

EK—l) , and clearly

A+l K K K
W, € & v, e WE(EA) ST E Xy XK e XU LW € 2y

By earlier remarks, the right-hand side of this last formula defines

k-1 . .
a EA -property of the ordered pair Wy SV I

The definition of a A';—co!;ﬂzctéon

K
A

as' a Z§—property and as a H;—property. To be precise:

As expected, we call s property A if it can be expressed both

:

10.20) Def y is a Ai-collection <

> Ay, fyAaly=<y .y,> &

+
a is a set & Vwlw e a — ¢ _l(w)) & ¥y E_al+l & Y, E_aA 1 &

K
"))

vx{x e yl(EK N

A) <> X € yg(ﬂ

_ 10.21) Def % ¢ y(Ai) <—=> ¥y dis a A;-collection E x ¢ Projl y(zi) .

The notion of a Aincollection is somewhat easier to work with
than the relations e(fi} and e{Hi) by themselves. OFf course,
many simple properties of A;-collections are immediate from (10.6)-
*

*
(10.18) and (10.10) -(10.18) For instance, let £ be a bounded

unary function symbol in an extension by definitions of au . Then:

10.22) a is aset & vwlwe a— ¢ {(w)) >

g=1
K
“)) -

Hzyx(x € Z(Ai) <—=> x¢ ak fxe yla




._:]_'r]___

Proog. We may assume that vy = <yl;y2> is a A;—éollection.

By (10.6), there is a =z. such that

1
X €3 (XK} <> (x e a & fxey (EKj) s by (10.7), there is a =
l_}\ - 1a) ? ) ? 2
‘'such that % « ZQ(H;)7<~*-b {x e a & fx e'yz(ni)) . Let 2z be
<zy 525> I
The proofs of the following are not much harder.
10.23)  mzyx(x ¢ z(A§+l) >t X € y(zi)) |
10.24)  mzyx(x e 2(af, ) <> x e ¥(1)) . ||
10.25)  Hzvx{x e z(A§+l) e~ Tx"<x', x> ¢ y(AE)) Al
10.26) dzvx(x e Z(A§+l) < §ixT<x' x> € y(Ai)) <
10.27) a 1is a set & ywiw ¢ a — EK"l(w)) > .

zvx(x e 2(8)) <— (x e a & x ¢ y(a5))) . |

10.28) gzvx(x ¢ Z(A;) <“— (x € yl(Ai) L x e yQ(Ai))) . H
10.29)  mzyx(x e z(A;) —> (x ¢ yi(ﬂihv X € yg(ﬂi))) -
1Q.30) qzyx(x e Z(Ai) e HWlHWE(X=<Wi,W2> & v, € yl(Ai) &

W, € yz(AE)i) . ”

10.31)  mzyx(x ¢ Z(A;) > X € y(A§+l))-. I

10.32) a is a set & ywiwe a —> € {(w)) ——>

g+l
R

> (x e a & x € y(A:

szyx{x ¢ z(A
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The A:-h,ie}:.anahg

What kinds of properties can be formalized as A;-collections?

First Df-all, it is fairly clear that every 4ef all of whose elements

satisfy €1 forms a Ag—collection:

10.33) a is a set & Yw(w ¢ a —= ¢ l(w)) ——
‘-

Fzyx{x e Z(Ai) o X € B)Y .

Proof. Let ¥y Dbe UI< % & 3 then clearly x e y(Zi) <—> X ¢ &

and X € y(ﬂg) <—=> x ¢ a. Let z be <y,y> . I
A somewhat more sophisticated resulit is the converse:

10.34)  Eb(b is & set & ¥x{x e b <> X € y(Ai)))
. 2 2
Proo§. Assume that y = <y ,y,> , with y, ca and y,ca .

K
Then X € y(Al) < HKX1<X15X> €y, g But also

X € y(i\.|<

K ; K
1) <= Y X <X L,X> € Y, s SO that x ¢ y(Ai) <> %y <K X é Y, -

For every x either x ¢ y(AE) or x ¢ y(Ag) holds, so in particular

for every x in & there is an x; such that gK(xl) and either

<X LE> € Y OF <X ,% ¢ v, - By bounded replacement (see §1) there

exists a function £ = {<x,xl>: x e akb minxl(<x1,x> € ylv <Xy %> ¢ ye)}
with the property that ¢ (f(x)) for every x in a . Let b be

K .
[x e a: <P(x),x> ¢ yl} . If xe b , then <f(x),x> € Yy » 80

Ele i) . If x ¢ b, then either

x ¢ a , in which case certainly x ¢ y(Ai) , or else X ¢ a and

<x1,x> € yl and therefore x e y(A

<f(x),x> ¢ Yo -- that is, ale<xl,x> é Yo s whence x ¢ Y(Ai) <l
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It follows from observations made earlier in this section that

K

2

Uv—fractions, unliimited Uv—fractions, and infinitesimal Uv—fractions

the x such that eK(x) form a A ~collection and that the limited

all form A;-collections. None of these collections forms a set,
of course, so it follows from (10.34) that we have before us several

examples of Ag—collections that are not A;—collections.

It is a well-known theorem of recursion theory [2,chapter T]
that every step in the arithmetical hierarchy is nontrivial: for
every A > 1 , there are ZA relations that are not AA and vice

" versa, and therefore there are AA+1 relations that are not AA
Tt is not at all clear how to duplicate this result in the present
situation. In the usuai proof, one enumerates all ZA relations of
one variable by a single EA relation of two varisbles and then
"diagonalizes"; the closest we can come to such an enumeration, how-
ever, seems to be (10.19), and the Jump from ¢ to k-1 precludes
the possibility of diagonalizing.

Ancother open question is whether bounded quantifiers

x'(x' < c&...) or vx'(x' < ¢c—= ...) can affect the smallest

K—
A

course, the bounded separation principle implies that bounded quanti-

value of X for which a formula defines =a zi— or I.-property. Of
fiers mey be used to define sets, so such guantifiers occurring fnside
a string of unbounded quantifiers (HK and VK) will have no effect.
That the same is true of bounded quantifiers preceding exactly one
unbounded quantifier is the content of the following proposition (and -

its dual, which follows from (10.13)). The proof appears not to general-

ize, however, and it is by no means certain that a formila of the form
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K
QX <xt, LLXL LX> € ¥)  always

Vit Ko K
yvx'(x' < e —> & AT N T R

defines a z;—property.

10.35)

Eg(c) — dz¥x(x € z(zi) — ¥x'(x' < ¢c —

<x',x> € Y(zi})) .

Proof. Write g(x) for the formula

vx'(x' < ¢

> <X L,X> € y(zi))=; we wish to show that e(x) is a
X;-property. We may assume that ¥y ¢ a2 & vwiwe a—> ¢ l(W)) s
= =

and also that EK-l(C): otherwise no x will satisfy o(x)

Certainly e(x) is equivalent to vx'(x' < ¢ —> ﬂle<xl,<x‘,x>>€ ).
If this holds for a particular x , then there exists a function

f={<x', x> x'<cék minx <X, ,<x',x>> € ¥y} . If x' < c , then

* 1

(e¢) , it follows that

1

(£) . {If « is

K . Ce-1 €c-2

1 or 2 , then the hypothesis (e) implies El(f) . We leave to

€
the reader the slight modifications of our argument for those two cases. )

Let m be the largest value attained by f , s0 EK(m) ; let M

be 2A(2Am) , so (M) . Let g be f u {<c+l,M>} . Then &g

€mp

is a function whose domain is {C,l,...,ctl} , and ¢ 2(g) holds;
-

moreover, 1f- x' < ¢ , then g(x')_i Log Log g(c+l)

. -2
We have shown that 6(x) implies 3 “geg,x> ¢ 2, s where z.

is the set {<g.,x> ¢ U 2: g 1is a function & Dom g = {0,1,...,cF1}&
=

vx'(x' < ¢ > (g(x') < Log Log glc+i) & <g(x'),<x', x> ¢ ¥))} .

Conversely, suppose HK_2g<g,x> ¢ z. , and suppose x' < c . Let Xy

1
bve g(x') . Then x

.i Log LOg g(C+l) and <xls<x‘ ax>> € Y - Since

1
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eng(g) by assumption, it follows that eK_Q(g(c+l)) and therefore

that Ex(xl) . Thus Ele<xl,<x',x>> € ¥y , and thus 6(x) . So

8(x) is a Xi-guproperty: it is equivalent to x e zl(z;wg) . But

the zi_zwelements of z. are all bounded above by E;—elements of

1
y , which are elements of a ; it follows by (10.18) that e{x) is
- K .

in fact a zl~property. ”

A nefinement: A

L.

j-collections

We conclude this section by describing briefly how the genetic
index k may be replﬁced by a fermal variable k . The idea is that
the definitions (2.1) of unary predicate symbols El(x)’EE(X)""

can all be encompassed in a single binary predicate symbol:

10.36)  Def ek(x) <——= Tu(u is a sequence & ILn u = k+2 &

vi{l < 1 < k+#1 —— u(i+l) = Log u{i))} &u(k+2) = x)
In the same vein (cf. (5.2)):

10.37) Def Uk = g <— gu{u is a sequence & Im u =k & u(l) = N &
vi{l < i < k-1 —— u(i+1) = Log u{i)) & a = Setlog ulk)) ,

otherwise a =1 .

{Aside from the case k = 0 , the "otherwiseﬁ clause irn (10.37) comes
into play precisely if =¢(k) , for in that case there can be no
sequence of length k . For the same reason,e(k} —> ﬂgk(x).)

It shoul@ now be clear how to convert (10.3) and (10.4) into
definitions of ternary predicate symbols x ely(2§) and X ¢ y(Hi)

(the variables being x , ¥y , and k). Actually, it proves useful to

be able to recover k from ¥ 3 this can be accomplished by making vy
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an ordered pair whose first element is k . That is, we define

10.38) Def x ¢ Y(Ef) < >k >1 & dy'daly = <k,y'> & a is a set &

+
E.Al

vwive a—>¢ (W) &y c &
E k &y < § '
o lV XE' .. ;\X;\ Xl sxga L :X)\ »X> ¢ ¥ e

k
and dually for E(HA) . Then we can simplify the notation by defining
10.39) Def x ¢ y(EA) < TKAY'(y = <k,y'> & x ¢ Y(Zi)) 5

. .k , : .
notions of Al—collectlon, e(Ai) s Almcollectlon, and E(AA)

follow close behind. Theorems (10.17) and (10.18) can be generalized

to

]

10.50) 0 < <k —> mvx(x ¢ o(}3) > x € y(I}))

and

10. k1) 0<k<3j&a is a set & ywlwe a —> Ej_l

dzdx(x € Z(Zi) <c—> (xc a & xe¢ y(Z?))) H

(w)) —>

the eariier proofs carry over straightforwardly, making use of a
bounded binary function symbol for the (Log m)~fold iterated logarithm
of x .

It should be noted, however, that some of the other results of
this section necessarily remain theorem Achemes, even for fixed A
For instence, (10.12) is certainly a theorem if in place of & we write
any of the formal terms 1.,2,...; on the other hand, we cannot prove

(10.12) with the unrestricted variable k in place of k . The

reason is that the proof reguires €, to respect multiplication —-
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something we cannot expect from the general ¢, . The reason for fthat

k

follows from our discussion at the beginning of §5. If, for instance,
e#(x) were known to be inductive in x for all k such that |

e(k) , then the formula vk(e(k) —> ek(x)) would be inductive in

x and would nespect exponentiation; as we noted in §5, this is

impossible.

i
i
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§11. Inginite Candinals

Treditionally, the notion of cérdinalityvhas been approached
through one-to-one correspondences. Such a method seems unsatis-
factory in dealing with our Ak—collections, for several reasons.
Requiring cur bijections to be functions (in the strict sense of
aU) would certainiy be too restrictive. On the other hand, more
general "Ah-mappings“ are quite unmanageable: as noted in §10, it
seems impossible to treat all ) at once, and any fixed A would
be arbitrary and unproductive inasmuch as simple operations on
collections can make the funetions involved much more complex.

We therefore adopt a different approach: we try to approximate
Ak—collections by Asets (in the sense of 5?) , both from below and
from sbove. In general, a collection will have subsets of all suf-
ficiently small cardinalities and supersets of all sufficiently large .
cardinalitieé (subject, of course, to the restriction e¢(Card a)).

We declare that the cardinality of a A -collection is determined by

A
the cardinalities of its subsets and supersets.

Before we make these ideas precise, a comment about Ak-collections
is in order. As they were presented in §10, it may well happen that

many different A, -collections have exactly the same Ak—elements. For

A
instance, in determining whether x ¢ Y(Zg) or x ¢ y(zg) » the presence
or sbsence in y of ordered pairs <xl,x> with -1e3(xl) is completely

irrelevant. This annoyance can be circumvented -- as problems involving

equivalence relations always can —— by considering objects of new sorts:

in this case, for each XA g sort for equivalence classes of
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Ah—collections medulo the relation of having the same elements.

The reader who so desires may imagine that we are working with these
sorts from the start; we prefer simply to disregard the problemland
assume that a AA—collection ig uniquely determined by its elements.

If we know that a formula &[x] defines a A ~property, ve shall not
hesitate to refer to "the Az-collection {x: &[x]}". It is hoped

that the reader will forgive an inecreasingly informal style in other

ways as well.

Candinality nefations
The following definiticns actually depend on A , but there is

probably nce harm in suppressing reference to A

11.1) Def a 1is an n-subset of y <——=> y is a Ax-collection &

a is a set & yx{x e a —> x € y(Ak)) % Card a = n

11.2) Def b is an n-superset of y <—= y 1ig a Ak—collection &

b is a set & yx(x ¢ y(AA) > X e b) & Carad b =n .

We define two size relations for AA—collections: "smaller

according to subsets" (<) and "smaller according to supersets” (<)

11.3) Def y, Ly, <> y, and y, are Al—collectlons &

(a, 1is an n-subset

Vn(ﬁal(al is an n-subset of yl) — Ha(a,

of ¥,))

11.4) Def yi_{ Yp <> ¥, and y, are AA—collectlons &

Vn(ﬂbg(b is an n-superset of y2) ——~brﬂbl(b is an n-superset

2 1

of yl))
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Now we say that ¥y, and y, are the same size (%)} if they

have subsets and supersets of exactly the same cardinalities.
11. Def y. = —_ 2 < .
11.5) ef y, ® ¥, < VAV, by Sy, &y, Ry, BV, <Yy

We shall allow curselves to use these symbols even if ¥y is

a A, =collection and y, a A  =-collection.
M 2 A2

As an example, consider the Ag-collections 2, = {x: eh(x}}

and Z, = {x: gs(x)} . Since Zp is a subcollection of Z) it

is obvious that z, £z, and z,< z, - On the other hand, it is

not the case that Zl % Zy - To see this, let KX be a number such

that EM(K) but =e_(K) . (We shail use this same X for several

p

examples in the course of this section.) Then Zl has K-subsets

but no K-supersets, and =z has K-supersets but no K-subsets. In

pa
this way, we regard z1 as strictly larger than 22 . If 23 is
the complement of Z5 in Zy - that is, the Az-collection
{x: gh(x) & ﬁeB(x)} —- then it is easy to see that 2, j_zB {if

gh(n)5 then {K+1,...,Kk+n} is an n-subset of 23) and zy < 2

(if Eh(n) , then z_ cannot possibly have an n-superset, since it

3

has an {n+l)}-subset}:; hence 24 = 2y

The reader with one-to-one correspondences on his mind may
wonder how the relation = compares with more traditional definitions.
If K is as above, then certainly {1,...,K} % {1,...,E-1} . On
the other hand, there {4 = "A2—mapping“ -— a Ae—collection of ordereal

pairs —- that puts these two sets in one~to-one correspondence: Just

subtract 1 from every x such that -nas(x) .
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If, however, f is a funciion mapping some superset of a Al-colm
lectiog yl bijectively to some superset of a AA—collection yg_ in
such a way that elements of yl correspond exactly to elements of y2
via f (this is the most one could ask for, since the domain and
range of a function must be sets), then subsets of vq correspond to

subsets of Yy o and (sufficiently small) supersets of Y1 correspond

to {sufficiently small) supersets of Y, 3 hence y ® Y, - Therefore

P

the relation ® 1is at least as,general as bijective correspondence via

functions; it is, in fact, more general, as the following example shows.

Let Zl . 23 , and K ©be as above, and suppose f 1is, as above,

a function mapping some superset of Zl bijectively to some superset

of =z in such a way that elements of =z and =z correspond. We

3 1 3
may certainly assume that every element of Dom fu Ran f satisTies
€y - Then ¥ e 23(52) <= gx(x ¢ Zl(A2) & f{x) =y)

<> i X<X,¥> € T

b

l) :

<e—= x ¢ f(z

" ois a ZE-property of v , and so therefore is

L1}
Hence "y ¢ z3(A2
"y e 23(A2) & ¥y < K". But this property is equivalent to ”qg5(y) & vy < X",
. . 5 l" . i " . 5
which is T (and therefore Hl) since gs(y) is Zl . It
L .
follows that all y such that v ¢ z3(A2) ¥y <X forma A -collection,
hence a 4¢f -~ which is absurd inasmuch as there is no smallest such y .

Thus no such funection f can exist, even though z, ® Z3 as was shown

earlier.

The following properties of 4, < , and = are obvious from the

definitions.
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11.6) y 1is a Almcollection —> y 4y . H

11.7) y 1is a A -collection >y <y - |
11.8 _
11.9) ¥, " Yy &7, 4 Yo > ¥ { ¥q - H

11.10) y, andy, are A, -collections —— ¥y j_yg VY, i_yl |

11.11) y., and ¥, are A -collections —> y, ¥, V¥, < ¥y Al

11.12) y is a Ahucollection >y =y . |

11.13) ¥y

tl
o
m‘<
1

o

11.1k) ylzyz&ygzyg-—wy zyB. ||

11.15) v, =z, &y

i1
ta

> 5 & Yy i_yg > 2 j_ze . H

4
b3
R
o
AV
¢
t3

11.16) Yy b &Y LY, 2y < z, o
A theony of infinite cardinals
Since (11.12)-(11.1L) say that = is an equivalence relation
on AA-collections, it is natural to examine the equivalence classes,
or "cardinals", by adjoining a new sort to our theory. Actually,

(", —cardinals'",

one new sort is not enough: we must adjoin sorts U 5

* " » 1"
5 collections), ey { A3 cardinals™),...

(A sort ey would serve no useful purpose, since "Al—cardinals“,

or equivelence classes of A

. " . . .
or "set-cardinals’, are nothing more than numbers satisfying ¢.)
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Let 8"P Dbe the theory obtained by adjoining °2’°3"“’Cp to au H

by §3, S"° is interpreteble in 0¥ . In S"° can be defined the

"quotient map" function symbols Cardg,Card3,...,Cardp with the

property that if y 1is a ﬂl—collection, then CardA y is its

AA-cardinality: its w=m-equivalence class.

As remarked in §10, every Ak-collection is a.AA+l—collection:

Just add & dummy quantifier. More precisely, there is a function

such that if y-‘is A, -collection, then Dummy. (y)

A A
) <c—= x € y(AA)) .

symbol DummyA

-collection and Vx{x ¢ Dummy. (y){a

is a AA+1 ) A+1

If YRV, s then clearly Dummyl (yl) = DummyA

with cross-level use of the symbol & , we can even write

(yg) {in fact,

y & DummyA (y)) ; hence Dummyl induces a function symbol DA of

type (CA;CA+1) . We shall make a practice of suppressing explicit
mention of DA s, pretending instead that every*Al—cardinal really 44

-cardinal, a A -cardinal,... . In the same way, we write simply

&b A+

Card y for the cardinality {at levels A,A+1,...) of the AA—collection
v , and e¢{n) for the cardinality (at levels 2,3,...) of the set
{1,2,...,n} {assuming e(n)) .

Hereafter let us reserve the letter c¢ , with and without sub-

scripts, for use as a variable of any of the sorts ¢ .., and

2:(13:'
the letter e , with subscripts, for the constant symbols

e = Card {x: sl(x)} » e, = Card {x: eg(x)},... .

11.17) Def ¢, £ ey < Hylﬁye(Card y, = ¢ & Card ¥ = ¢ &

1 2

ylj_yg&yl-(yg) .
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By {11.15) and (11.16) an equivalent definition wouid be

11.18) c. < ¢

1 S ¢ T Vylvye({}ard y, = ¢ & Card y, = c, >

11.19) Defcl<c <——> ¢, < ¢, ko Fc

For example, e
11.20) e < ¢

Prook. By (11.6) and (11.7). ||

Proof. 3By the definition (11.5). ||

11.22) r_*li{:g&czf_c3 3 20

Proof. By (11.8) and (11.9). ||

The content of (11.20)-(11.22) is that < partially orders
all cardinals. The guestion arises whether this ordering is total,

a related question is whether the relations <4 angd { are the same.

Pseudosels
The answer to both gquestions is no. Where K is our favorite

number such that eh(K) &=c_(K)}) , let z ©be the collection of all x

>

such that x < K &=e_(K-x) +together with all even x such that

>

either x < K & EB(K—X) or x> K& es(x—K) . Clearly z is a

AE——collection. We claim that =z has neither a subset nor a superset

of cardinality K ; it follows that =z <€ {1,...,K} but ==z { {1,...,K},
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that {1,...,K} <z but -1{1,...,K} 4 z , and that neither
Card z < ¢(K) nor eo(K) < Card z holds.

First suppose a 1is a subset of =z . Then a contains a
largest cdd element m and a largest even element n . By the

definition of 2z , m <K and in fact ¢ (K-m) ; we may assume

P
that n > K , but in any case gs(n-K) and therefore 35(n—K+3) .
It follows that n-K+3 < K-m , so
‘ 1
Card a < (m+l) * 5 {n+l-m)
= 1 :
=m + 2 ({n-K+3)+(X-m})
<nm + (K-m)
=K.
Thus =z hasgs no K-subsets.
Now suppose b is a superset of 2z . Then there is a smallest

odd number w nof in b and there is a smallest even number n nof
in b . By the definition of z , n > K and in fact ﬂSS(n-K) .
and therefore -aes(an—3) ; we may assume that m < K , but in any

case ES(K—m) . It follows that- K-m < n-X-3 , s0

Card b > (m-1) + = (n-1-m)

o

Thus 2 has no K-supersets.
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The problem with z is that its cardinality is imprecisely
determined; there are some numbers, like K , that are too big to
be the cardinality of a subset of 2z and at the same time too small
to be the cardinality of a superset of z . Collections with

"precisely determined" cardinalities we shall call pseudosets.

> ¥y is a A, -collection &

11.23) Def y 1is a A,-pseudoset < N

yn{e(n) > gala is an n-subset of yva is an n-superset

of y)) .

11.24) Def ¢ is a pseudoset-cardinal <—> gy{y is a A, -pseudoset &

Card y = ¢).

¢

It is easy to see that {x: El(x)} , {x: EQ(X)},... are pseudo-

sets, so that e_,e

1 are pseudoset-cardinals. In fact, more

peee

can be said.

11.25) Def y is hereditary <—> y is a AA—collection &%

ywyx(x € Y(AA) & w < x > w e y(8,))

11.26) ¥ is hereditary > vy is a A, -pseudoset.

A

Proof- If eln) & n e y(Al) , then {1,...,n} is an n-subset
of y . If e{n) &n ¢ y(ﬂl) ., then {0,...,n-1} is an n-superset

of ¥ . ”

It should go without saying that every 4% all of whose elements

setisfy ¢ 1s a pseudoset, so that every set-cardinal is a pseudoset-

cardinal.
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Cr: pseundosets, the relations £ and ? really are the same;
as a consequence, pseudoset cardinals ate totally ordered. The

details follow.
11.27) Yl.i Y, % ¥, 1is a pseudoset — Yy 4 Vs -

Proog. Let b2 be an n-superset of Yy - Since ¥y is a
pseudoset, yl has either an n-subset or an n—-superset, If the

latter, there is nothing more to prove, so let 8y be an n-subset of

Yy - Since yl‘i Yo there is an n-subset &y of Yy o Now

8, & ¥, E.bg and Card 32 = Card b2 =1 , 50 y2 = as = b2 is a sef

with n elements. We claim that yl = a, , 50 that ¥y is also a

1
set with n elements and therefore trivially has an n~superset. To
see this, assume some x satisfies x e yl(ﬁl) & x ¢ a) - Then

a) U {x} is an {n+l)-subset of y, - But this implies that y, has
an (n+l)—subset, which is clearly impossible; it must therefore be

the case that yl = al . |[
Similariy:

11.28) ¥, 4¥, & ¥y, is a pseudoset — vy 5_y2 .

In combination, (11.27) and (11.28) imply

11.29) yl and Yy, are pseudosets —— (yl j_yg < > yl Q yg) . ”

The next two propositions are now immediate in light of (11.10).

11.30) y; and y, are pseudosets ——> ({y; 2 y2 &y, < ¥p) v

(vp vy, &y, <v)) - | '
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> e < eV

11.31) c, and e, are pseudoset-cardinals

Two more little pieces of mumbo-jumbo: & collection with the
same cardinality as a set .4 a set, and a collection with the same

cardinality as a pseudoset £4 a pseudoset.

11.32) Card y = ¢{n) —> Fala is & set & Caré@ a = n &

)

vx(x € a < > x € y(&

Proof. If Card y = e(n) , then y has an n-subset a and

an n-superset b , 50 necessarily y = a=1b . H

:

11.33) Card y is a pseudoset-cardinal > ¥y is a pseudoset.

Proof. If e(n) , then Card y and c(n) are comparable by

(11.31); hence y has either an n-subset or an n-superset. H

Propenties of pseudoset-cardinals
For a given cardinal ¢ , there can of course be many different
Al-collections ¥ such that Card y = c¢ . If ¢ 1is a pseudoset-

cardinal, however, there is a canonical representative for ¢ : the

unique hereditary y such that Card y = c

11.3%4) ¢ 1s a pseudoset-cardinal —> F'y(y is hereditary &

Card y = ¢)
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Proog. Let 2z be any pseudoset with Card z = e ; and let
Y ©be the collection of all n such that z has an (n+l)-subset.
Clearly y is hereditary. If 2z has an n-subset, then so does N
(namely {0,...,n-1}) ; hence = i Yy . If =z has an n-superset,
then =z cannot have an (n+1)—subset, so {0,...,n=1} is an n-superset
of ¥y ; hence vy 2 2z . Because y and 2z are pseudosets, we have
¥ = 2z and therefore Card y = Card z = ¢ .

To prove unigueness, let =§' be another hereditary collection
with cardinality c¢ . If n e y(A )} , then {0,...,n} is an (n+l)-

A
subset of y . Therefore y' has an (n+l)-subset. The largest

element of a set with n+l elements must be at least n ; since ¥!'

is hereditary, it follows that n ¢ y'(AA) . Likewise y' cy . |

(Actually, vy is "unique" only up to the relation of having the same

elements; see the introductory remarks to this section.)

11.35) Def H{e) = y <> ¢ is a pseudoset-cardinal &

y is hereditary & Card y = ¢ , otherwise y =0 .

Cpen question: 1f ¢ is the cardinality of a Ak-pseudoset z
must H(c) be a Ak—collection (for the same A) ? TFrom the fact that

n is in HB(e) if and only if
. Hala is & set & Card a = n+l & Vx{x ¢ a —> x ¢ Z(ﬂh))) )

it is clear that the answer is yes {§ it is true that bounded quanti-
fiers do not affeect the complexity of a collection; see the discussion

leading up to {10.35). In any case H(ec) is at worst a AA+2—collection.

Here are some simple but useful definitions and observations.
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11.36) Def c is infinite <

> wmmn{ce = e(n}) .

11.37) Def y is inductive <—3y is a b,~collection &

ym(m e y(AA) — mt+l e y(AA)) .
11.38) y is inductive —> Card y is infinite.

Pnooﬁ. If Card y = ¢(n) » then ¥y has an n-subset a . Let
the largest element of a be m ; then since y is inductive,

au {m*tl} is an (n+l)-subset of y , a contradiction. [
11.39) ¢ is an infinite pseudoset—cardinal —> H(e) is inductive.

Proof. If me H{c) but m+l ¢ H{c) , then H(ec) = {0,...,m}

is a set and ¢ i1s not infinite. ”

There is a natural way to define the sum of two pseudoset-cardinals,

(X)} s

but it does not involve unions. 1In fact, if Yy = {x: €5

Y, = {x <K &-wg5(x)}, and gy = {x: x < K+l &'155(X)}, then Yo ® Vg
but YU ¥, -4 ¥y v y3 , even though y, 1is @¢isjoint from both Yo
and y3 - Before presenting the adight definition, we modify the

definition of H(e) slightly.

11.40) Def H'(c) = y <—= ¢ is a pseudoset-cardinal &

I}

Yy = {n+l: n ¢ H(c)} , otherwise y =0 .

Clearly Card H'(e) = Card H(e) =c . If ¢ =c¢(n) , then
H(e) = {0,...,n=1} and H'(e) = {1,...,n}. If ¢ is infinite, then

by (11.39) the only difference between H{c) and H'(c) is the presence

of 0 in the former. ' ,




-191-

11.41)  Def cl+c2 = ¢ <—= ¢_ and e, are pseudoset-cardinals &

1 2
c=Card {J: § 21 & @mAn(m ¢ H'(e;) &ne H'(c,) &

J < m+n)} , otherwise c = ¢(0) .

It is easy to see that + ‘behaves properly on set-cardinals; that
is, c(m)+e(n) = ¢(mtn) . Or infinite cardinals, this addition

operation, unlike its counterpart in Cantorian set theory, is non-

trivial: one can check that

1
:

< c(2K)+e. = (c(K)+e_ ) + (e(K)+e

c(¥X)+e 5 5 5)

>

On the other hand, it is certainly true that eh+eh = e (eh
"respects addition") and that e5+eh = e . These examples show

that ¢, < ¢, does not imply e jte < cyte . (That implication is

valid, however, if ¢ is a set-cardinal.) Further properties: +

is commutative and associative, and if at least one of ¢y and 5

is infinite, then cl+c2 is infinite.

The above approach makes it clear how to define

c <« ¢ and ¢ are pseudoset-cardinals &

“2 = 1 2
c=Card {J: j>1 & Hnin{m ¢ H‘(cl) & n e H‘(ce) [

11.42}  Derf ey

j < mn)} , otherwise c = ¢(0) ,

as well as cl#c2 ) cl #1 Coaeee « One can define also a subtraction
operatiocn,
11.43)  Def c,-c, = ¢ <> ¢, and c, are pseudoset~cardinals &

c =Card {mi m> 1 & ¥n(ne H'(c,) = mHn ¢ H'(cl))} 3

otherwise ¢ = ¢(0) , ‘
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and likewise division and inverse smashes. Warning: clearly
- + - .
(Cl 02) C2 i.Cl and cl i_(cl+c2) c2 » but equality does not always
hold. (Example: (c(K)-e5)+e = Q(K)—85 < e{K) < a(K)+e

5
Equality does hold if ¢, 1is a set-cardinal.

>

The following curious thecrem gives some idea of what infinite
pPseudoset-cardinal arithmetic ean accomplish, and at the same time
sheds some light on the ordering relation < . The statement is
that between every two infinite:pseudoset—cardinals at least one of

which respects addition there is one that does nof respect addition.

11.4Y%) ¢, and ¢, are infinite pseudoset-cardinals & (cl+c1 =<

‘o = . s _
eyte, cg) & ¢ < Cy = ge{c  is an 1?f1n1te pseudoset

cardinal & c+c # ¢ & e, < ex< CE) .

Proof. There is some k such that o, < elk) < ¢

1 ;3 replacing

2

k by k+1 if necessary, we may assume k is even. First suppose

1 _
= 7 t 3 — L

e, +ey c; - Since k ¢ H (cl) » 1t follows that 5 kdH (cl) . Let
¢ be c(k)-cl - Then ¢ is infinite (certainly E'(e) is inductive)

and c¢_< c(%-k) <c<g(k) < e Moreover, H'(e¢) contains % k but

1

not k i thus ¢ < c+c

o -

} -+ = 1 - R
Now suppose cote, = ¢,y S0 2keH fce) ; let ¢ be c(k)+cl
Then keH'{c) but 2k ¢H'(c) ; thus cl<c(m <c«:c@k)<c2,

is infinite, and ¢ < ¢(2k) < c+e . ”

= (c(K)+e5)—e

In particular, if ¢ is any cardinal that does respect addition

1

{for instance, 65), then there cannot be a smallest infinite cardinal

e, with ¢y < c, 3 infinite pseudoset-cardinals, therefore, are not
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well-ordered. It is natural to ask whether there may be a §inst
infinite pseudoset-cardinal. If there wvere, it would be quite sur-
prising. In the absence of a definitive answer, we can at least say

that if such a cardinal exists, it respects addition:

11.45) ¢y is an infinite pseudoset-cardinal & c:|_+c::L # ¢, —

ge(c is an infinite pseudoset-cardinal & c < cl) .

Proof. Let y Dbe {m:m__>_~l&m+meH'(c1)} . If c; does

not respect addition, then -y is a proper subcollection of H'(cl) )
so Card y {which is actually the cardinal cl/c(2)) is strictly
smaller than ¢y - Since H'{cl) is inductive, so is ¥y ; hence

Card y 1is infinite. ||

From (11.45) and preceding remarks, it follows that while for
all we know there may be a smallest infinite pseudoset-cardinal,

there definitely cannot be a second-smallest as well.

An application
Let us revisit (9.37), the existence of primes p with Hev(p) .
and give a new proof using the techniques of this séction. To be
concrete, we prove the existence of p such that Eh(P) & wEB(p) . In
fact, we prove something stronger: +the primes p with Eh(p) form
a pseudoset whose cardinality is at least e_ . (If there were no p

5
with sh(p) &-,55(p) , then {p: eh(p)} = {p: p < K} - would be a set

whose cardinality would be some of{n) < e_.)

>
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Let qah(M) , and let p, = 2 5 Py = 3504050 be a séquence

enumerating the primes < M . It is clear that for each n <m ,

{pl,...,ph}' is either an n-subset or an n-superset of ¥

{p: e),(p)}
and that in particular {pl,...,pm} is an m-superset of ¥y ; hence

y is a pseudoset. (A generalization of (11.26) lurke here: the
intersection of a hereditary collection with a set is always a pseudoset. )

To show that 'e. < Card y , it suffices to show that if es(n) , then

>
{Pl""’pn} is a subset of y .
Suppose not; then {pl,...,pn} is a superset of y . By the
fundamental theorem of arithmetic, every nunmber satisfying E), can
be written as a product of powers of elements of ¥y ; hence as a product
f jl 32 3n
of powers of pl,...,pn s hence in the form Pl p2 ...pn where every

exponent satisfies es(ji) . (After all, -155(3} —— ﬂeh(EJ).)

In particular, {x: € (x)} is a subcollection of
P 4 .

jl j2 3y
{pl Py Pt Jl <K & 32 < K&...&jn < ¥} . But this last collection

is a set, and its cardinality is k? . Since EM(K) & €5{n) , it follows
that eh(Kn) . hence no set of this cardinality can be a superset of

{x: Eh(x)} . From this contradiction, we conclude that {pl,...,pn}

is a subset of ¥y , and thus e_ < Card ¥ .

p




