
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	http://www.researchgate.net/publication/235216029

Memories	of	S-Expressions	Proving	Properties	of
Lisp-Like	Programs	That	Destructively	Alter
Memory

ARTICLE	·	MAY	1985

CITATION

1

READS

10

2	AUTHORS,	INCLUDING:

Ian	A.	Mason

SRI	International

60	PUBLICATIONS			1,536	CITATIONS			

SEE	PROFILE

Available	from:	Ian	A.	Mason

Retrieved	on:	23	December	2015

http://www.researchgate.net/publication/235216029_Memories_of_S-Expressions_Proving_Properties_of_Lisp-Like_Programs_That_Destructively_Alter_Memory?enrichId=rgreq-ee152da9-e448-4b31-b209-8ddbc45707a6&enrichSource=Y292ZXJQYWdlOzIzNTIxNjAyOTtBUzoxMjk4Nzg1MjMzODc5MDZAMTQwNzk3Njg2MTk1NQ%3D%3D&el=1_x_2
http://www.researchgate.net/publication/235216029_Memories_of_S-Expressions_Proving_Properties_of_Lisp-Like_Programs_That_Destructively_Alter_Memory?enrichId=rgreq-ee152da9-e448-4b31-b209-8ddbc45707a6&enrichSource=Y292ZXJQYWdlOzIzNTIxNjAyOTtBUzoxMjk4Nzg1MjMzODc5MDZAMTQwNzk3Njg2MTk1NQ%3D%3D&el=1_x_3
http://www.researchgate.net/?enrichId=rgreq-ee152da9-e448-4b31-b209-8ddbc45707a6&enrichSource=Y292ZXJQYWdlOzIzNTIxNjAyOTtBUzoxMjk4Nzg1MjMzODc5MDZAMTQwNzk3Njg2MTk1NQ%3D%3D&el=1_x_1
http://www.researchgate.net/profile/Ian_Mason5?enrichId=rgreq-ee152da9-e448-4b31-b209-8ddbc45707a6&enrichSource=Y292ZXJQYWdlOzIzNTIxNjAyOTtBUzoxMjk4Nzg1MjMzODc5MDZAMTQwNzk3Njg2MTk1NQ%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Ian_Mason5?enrichId=rgreq-ee152da9-e448-4b31-b209-8ddbc45707a6&enrichSource=Y292ZXJQYWdlOzIzNTIxNjAyOTtBUzoxMjk4Nzg1MjMzODc5MDZAMTQwNzk3Njg2MTk1NQ%3D%3D&el=1_x_5
http://www.researchgate.net/institution/SRI_International?enrichId=rgreq-ee152da9-e448-4b31-b209-8ddbc45707a6&enrichSource=Y292ZXJQYWdlOzIzNTIxNjAyOTtBUzoxMjk4Nzg1MjMzODc5MDZAMTQwNzk3Njg2MTk1NQ%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Ian_Mason5?enrichId=rgreq-ee152da9-e448-4b31-b209-8ddbc45707a6&enrichSource=Y292ZXJQYWdlOzIzNTIxNjAyOTtBUzoxMjk4Nzg1MjMzODc5MDZAMTQwNzk3Njg2MTk1NQ%3D%3D&el=1_x_7

June 1985 Report No. STAN-CS-85-1057

■mm
PB96-148861

Memories of S-expressions
Proving properties of Lisp-like programs that

destructively alter memory

by

lan A. Mason and Carolyn L. Talcott

I .gBKEBMSHIJS
£fiSxoved tat gufeisc release" 1
Department of Computer Science

Stanford University
Stanford, CA 94305

19970609 051
pTiG QUMtof ES'SP'SCäSD #

Memories of S-expressions

Proving properties of Lisp-like programs that destructively alter memory

T •—

♦ ! •" -*\ •
1—_1

■»Ml

t
-h
t

lilt)

* * ! *H—*s

Copyright © 1985
Ian A. Mason and Carolyn L. Talcott

Stanford University HT1S „ «^*£&?<$'M*

Research supported by ARPA contract N00039-82-C-0250.

DTIC QUMICT JNE3PECK3D 3

81 Introduction and Notation

1. Introduction and Notation

In this paper we present a mathematical model called a memory structure, and define a
computation theory over such structures. This computation theory provides a semantics for
first-order, lexically scoped Lisp-like languages and we use this as a basis for expressing and
proving properties of a variety of programs that destructively alter the contents of memory.
Since we have chosen to work in a Lisp-like world, our subject matter is particularly relevant
to the Lisp programmer. The main example in this paper is a proof of the correctness of
the Robson copying algorithm, [R]. This algorithm copies possibly cyclic Lisp style S-
expressions using bounded storage and illustrates how destructive memory operations can
be used to write fast efficient programs. The paper is organized as follows: In section two
we describe the class of memory structures and introduce Maexp, the S-expression memory
structure as a particular example. In section three we describe a computation theory over
these structures that corresponds to a Lisp-like programming language. In section four we
study Msexp in more detail, developing the concepts one usually finds in Lisp-like languages.
Section five gives four simple correctness proofs of typical Lisp programs both destructive
and otherwise. The last two sections deal with the Robson copying algorithm and related
programs.

We finish off this section by describing some of our notation. We use the usual notation
for set membership and function application. Let D, D0> Di, .. .Dn be sets, then B0©Di is
the (disjoint) union of D0 and Dt. We only use © applied to disjoint sets, thus it is mainly
a matter of emphasis. D0 <8>.. • <8> Dn_i is the set of n-tuples with Ith element from D; for
i < n. We write D(n) for D0 <8>.. .®Dn_i when each D; is D. D* is the set of finite sequences
of elements of DJ.

D* = (J D(n)

Some notation for sequences follows. □ is the empty sequence, the unique element of
D<°> for any domain D>. For d,d0,... ,dn-i,d'0,... ,d'm_1 G D, the sequence of length
n with Ith element d> for * < n is written [d0,... ,dn-i]- Let v = [do,... ,d„_i], u =
K)>--->^m-i] and i < n then \v\ is the length of v while vj.,- is the t*fc element of v,
namely di. vou = [d0,..., dn-1,d'0,...,d'm_x] is the concatenation of v and u. We identify

df
d with the singleton sequence [d]. Note that (u o v) o w = u o (v o w) and [] = a

Pw ID is the domain of finite sets from D. [Do -^ Di] is the set of total functions from
Do to Di, and [D0 ~^ Dx] is the set of partial functions. If p € [D0 ~>- Di], then 6M is the
domain of ß and p^ is its range. For d0 € D0,di £ Dx, and p G [D0 ~>- Di] we let

n{d0 -trdx}

be the map p0 such that Ho(d0) — di and Ho(d) — p(d) for d^ d0.

Some particular sets that we shall use frequently are as follows. 2 is the integers and
z, z0, ... range over 1. N = {0,1,2,...} is the natural numbers and n,n0, ... range over
P«J. We consider a natural number to be the set of numbers less than it, thus the less than
relation, <, is simply the membership relation, G, of set theory. We let T = {0,1}* be the

§2

complete binary tree, i.e. the set of finite sequences of O's and l's. We use ln to denote
the sequence in T that consists of exactly n ones. Note that 1° = a We shall adopt the
convention that trees grow downward and <7,<r0, ... will range over T. We use two partial
orderings on T. The initial segment relation, <, and the Brouwer-Kleene linear ordering, -<.
<7o < &1 is taken to mean that <T\ is below o~0 in T, while a0 -< <j\ means that <TQ is before
&i in T. The below relation is defined by

<70 < G\ <-*■ 3(T 7^ 0 {(Ti = (To ♦ o~)

and the before relation is defined by

(To < <?i <-+ Co < (TX V 3cr,<r2,cr3((70 = cr♦ 0ocr2 A «7i = <7 0lo<r3).

The before relation is also known as the depth-first ordering.

We wish to thank several people, Ross Casley and Martin Ross for proofreading an ear-
lier draft of this paper and detecting many absurdities, Dave Touretzky for kindly allowing
us to reproduce some diagrams from his book [To], and finally Dennis de Champeaux for
providing us with an annotated Interlisp version of the Robson copy algorithm, the reason
this paper exists.

2. Memory Structures and "sexp

In this section we introduce the notion of a memory structure over a set A of atoms.
The purpose is to model the memory of a Random Access Machine (RAM) and to study
the abstract structures typically represented in such machines. The memory of a RAM
can be thought of as a collection of locations (at any particular time this collection will of
course be finite). The machine uses these locations to store various types and quantities of
objects. There are machine instructions for accessing and updating the contents of memory
locations. Some objects are intended to represent abstract quantities such as numbers,
boolean vectors, characters, etc., and there are machine instructions for computing functions
on these abstract entities, such as arithmetic operations and boolean functions. The exact
nature and number of the objects storable in each location varies from machine to machine,
we shall abstract away from this machine dependent aspect of memory. Consequently we
will assume that our hypothetical machine can store a sequence of objects, (the sequence
being of arbitrary finite length) each object being either an atom from A or the address
of another location in memory. An address in this sense is simply some specification of a
location by which the machine can access that location (and its contents). Again the precise
nature of these addresses will vary from machine to machine, and so again we will abstract
away from these implementation dependent details.

In this paper we will be mainly concerned with S-expression memories that can only
store pairs of objects in each location, however we will treat the general case first leaving
S-expression memory structures as a particular example. Let A be some fixed set of atoms
and L some countably infinite set disjoint from A. L is the set of memory locations of our
hypothetical machine. The elements of the sequences that are stored in these locations are

§2 Memory Structures and "atxp

the memory values and we denote them by V. Thus V = A © L. A memory ß is a function
from a finite subset of L to the set of sequences of memory values, V* = (A © L)*. Since
we wish ß(l) to represent the contents of the location I in the memory ß, we also require
that those locations which occur amongst the contents of locations are also locations in our
memory. Thus we define a memory ß to be a finite map such that

/*€&->-(«„9 A)*].

where 6M is a finite subset of L . The set of all memories over A and L is denoted by MI(A,L) •

Now suppose that y is a set of memories, a memory object of Ml is a pair

[v0,...,vn_i] ;/i

such that ß is a memory in Ml and the sequence [v0,..., vn_i] satisfies t>< e^©fl for i G n.
Thus a memory object is a memory together with a sequence of memory values which exist
in „i.at memory. We invariably write such a memory object simply as v0, ■. ■ ,vn-i ', ß- A
memo y structure is defined to be a set of memories Ml together with a set of operations ©,
which are allowed to be partial, on those memory objects of Ml. The operations model the
machine instructions for manipulating objects. We usually refer to a memory structure by
its collection of memories M, taking the operations to be implicit. We also abuse notation
and refer to the set of memory objects of a particular collection of memories Ml simply by
Ml, context should always prevent confusion. One last abuse of notation is that by Ml<n)
we always mean the collection of memory objects whose sequence of memory values is of
length n, the reason for this is that we often want to apply a memory operation or defined
function to several arguments all of which we assume exist in one and the same memory.
For ease of reading we let /i, ß0, ... range over memories, v, v0, ... range over V, a,a0, ...
range over A and l,l0, • • • range over L.

2.1. Definition of a memory structure M

We can summarize the above definitions as follows:

. A and L are disjoint sets, L countable, and V = A © L is the set of memory values.

. A memory is a finite map ß from L to V* such that ß G [<5M ->- (8^ © A)*]. The set of
all memories over A and L is denoted by Ml (A,L)*

. Let M be a set of memories. A memory object of Ml is a tuple v0,... ,u„_i ; ß such
that ß is a memory in MI and Vi G 6^ © A for i G n. We write v0,..., *>n-i ; ß € M(n)

to emphasize the length of the memory value sequence.

■ • A memory structure is a set of memories Ml together with a set of operations © on
memory objects of M.

2.2. The S-expression memory structure

As a particular example of a memory structure we now present the S-expression memory
structure. It should be very familiar to those readers acquainted with any Lisp-like language.
We assume that the integers Z are contained in A and that A contains two non-numeric
atoms T and NIL. These atoms are used to represent true and false, NIL is also used to
represent the empty list. We shall also assume that there are an unlimited collection of
non-numeric atoms other than the two we just mentioned. We shall usually denote them
by strings of upper case letters IN THIS FONT. Thus for our purposes the following are also
in A: INFINITY, MIO, THIS:ATOM, ...

The set of S-expression memories, Maexp, is defined by:

Msexp = {[ie M(A>L) |M€[^> V(2)]}.

Thus, as we mentioned earlier, the S-expre^Sion memory can only store pairs of memory
values in its memory locations. To complete our specification of of the S-expression memory
structure we need only describe the operations <0>sexp. These are as follows:

®sexP = {int?, cons?, eq, addl, sub 1, cons, car, cdr,rplaca,rplacd}
t

int? and cons? are characteristic functions (recognizers) of Z and L, and eq is the charac-
teristic function of equality.

.nt?(t; ;/!) = (3'/* */ K '^J \NIL;/i liv

T;H if v e L

eZ

canS?(,;/,)_lNiL;/i .iv^L

. I NIL ; ß if VQ ^ vi

addl and subl are the successor ansj predecessor functions on Z.

addl (z;ß) = z + l;ti

subl (z ; n) = z - 1 ; p

The cons operation is a pair constructing function and car and cdr are the corresponding
projections. Note that cons enlarges the domain of the memory object by selecting a new
location from free storage and putting the arguments as its contents. The free storage of a
memory /i is just another name for L - 6^.

cons(vo,Vi ;fi) =l;n0 where I & 8^ and /x0 = //{/ -<-[v0,ui]}

car(l;ß) =n{l)i0;n

cdr(l;/j) =M(0II !A»

§3 A computation theory over memory structures.

The destructive memory operations rplaca and rplacd update the contents of a pre-existing
location in memory. The domain of the resulting memory object is unchanged. By the use
of these functions one can obtain memory objects that store their own locations.

rplaca(l, v ; p) = I ; po where po = p{l ~*-[v>ß[l)\i]}

rplacd(l, v ; p) = I; po where po = p{l -*-[M(0IO>
V

]}

We shall refer to the S-expression memory structure simply by Msexp-

In most cases we shall not be interested in the value of the rplacx operations, x G {a, d},
so for convenience we define the operations setcar and setcdr.

8etcar(l, v ; p) = p{l -«-[v, ^(Oli]}

8etcdr(l,v;p) = p{l +[p{l)l0,v]}

Note that rplacx(l, v ; p) = / ; setcxr(l, v ; p) for x 6 {a, d}.

We have not defined addl or subl on anything other than integers nor car and cdr
on A or Ma1Xp, when n^l. We shall not specify their behavior on these sets, the reader
should rest assured that the issue is of little importance in this paper.

3. A computation theory over memory structures.

In this section we describe a programming language for computations over memory
structures and give this language a semantics. Our language is a first-order lexically scoped
Lisp-like language. Although we will work only with the S-expression memory structure,
we define the language and semantics for an arbitrary memory structure M with atoms A,
locations L, and operations <D. We assume that A contains a distinguished atom NIL.

3.1. Memory expressions over M.

We begin by defining the expressions of our language. Let X and F be disjoint countable
sets. Elements of X are memory variable symbols and range over memory values. Elements
of F are function symbols, each with an associated finite arity. Finally there are constant
symbols for the atoms and memory operations of M. However, we will not make any attempt
to distinguish between an atom or operation and the constant that denotes it. We use x,
Xo, .. .for elements of X, /, /o, .. .for elements of F, and e, eo, .. .for memory expressions.
The set of memory expressions is defined inductively to be the smallest set E containing

.V=A©L

and closed under the following formation rules:

If etest, ethen, eeise 6 E then if(etest,ethen,eeise) G E.

§3

■ If t\,..., cn, Cbody € E and x\,..., xn €X are distinct then

let{xi -«- ei,... ,xm ■+ em}ebody € E.

■ If «i,... ,en G E then seq(ei,... ,en) € E.

■ If ß is either an n-ary memory operation or n-ary function symbol from F, and
ei,...,en € E then tf(ei,... ,en) € E.

The only variable binding operation is let. let{yi -<- el5... ,ym -+ cm}ebody binds
the free occurrences of & in ebody The {yi -<- ei,... ,ym -«- era} part of a let expression
is called the binding expression. For a memory expression e the set of free variables in
e, FV(e), is defined in the usual manner. We say that e is closed if FV(e) is empty.
e{yi -<- vi,..., ym -<- vm} is the result of substituting free occurrences of the y,- in e by the
values Vi, or to be more precise the constant symbols denoting them. We often write

[eo»...5«n]

for seq(c0,...,en).

Prior to describing the semantics of memory expressions, we need to make one more
definition. A system of memory function definitions is a list of triples

recdef((/o,6s0,e0),...,(/„,6sn,cn))

that satisfies the following conditions:

■ Each bsi is a sequence, without repetitions, of variables from X of length m,-.

• fi is an m^-ary function symbol from F.

. e; must be a memory expression such that FV {ey) is a subset of 6s,-, the only function
symbols that occur in ex are among fo,...,fnt and no / € L occurs in any of the et.

The recdef construct allows us to define a set of mutually recursive functions. The
sequence 6s,- names the arguments of the function fi and e,- is the expression used to compute
its value. In more traditional notation we have

/o(6s0) <— e0

fn{bsn) *- eh

Given such a system of definitions, call it D, we say /,- is defined in D and similar self-
explanatory expressions. Note that our language is first order in the sense that we do not
have functionals (functions with function parameters or values).

§3 A computation theory over memory structures.

3.2. Rules for computation over memory structures.

A closed memory expression together with a suitable memory describes the computa-
tion of a memory object. Such pairs are called memory object descriptions. To make the
notion of suitable precise, we fix a system of function definitions

D = recdef((/o,6s0,e0),...,(./n,fcsn,en)).

Then a memory object description is pair e ; M that satisfies the following conditions:

■ e is a closed memory expression,

■ any I that occurs in e is also in 6^, and

• every function symbol / € F which occurs in e is defined in D.

The basic rules for computation are given by a single step relation on memory object
descriptions, c0 ; Mo -+>D ei ;Mi> generated by the rules below. That is, -+>D is the
least relation containing the primitive cases and closed under the congruence conditions.
The primitive cases correspond to primitive machine instructions for branching, sequenc-
ing, variable binding, execution of memory structure operations and function call. The
congruence cases are rules for reducing sub-expressions in order to reduce descriptions to
primitive cases. They determine which sub-expression may be reduced and the effect of
that reduction on the description containing it.

Primitive cases:

lf(UO,ethen,eelseJ ,M ~» \fi< ... :f .. _
1^ celse j f* "■ u0 —

NIL
NIL

seq(e) ; p —>> e ;M

seq(v0,ei,...,em) ; ß -+>D seq(ci,... ,em) ; M

let{yi -*-vi,...,i/m -<-vm}e ;/i -*>D e{yi -«- vx,... ,ym ■+ vm} ; M

■d(vi,... ,vn) ; (I -+>D Vo ; Mo if t? is a memory operation and d(vi,...,vn ; ft) = t>o ; Mo

d(vi,...,vn) ;n ->>D e{yx -*- vu... ,yn -«- vn} ; ß if (#, (ylt... ,yn), e) bin D.

Congruence cases: If ea ; Ma —>>D e\>; Mb then

ii(ea,ethen, eelse) \ Ma ~» ** (^b, Cthen , Celse) \ Mb

seq(ea,...) ; Ma -»D seq(eb,...) ; Mb

let{2/x -(-vx,...,^-! -*-Uj-i,J/y-<-ea,...,2/m -<-em}e ; Ma -*>

let{2/! -*-vi,...,yy_i -*-vy_i,yy-«-eb,...,ym ■+• cm}c ;Mb

tf(ui,...,vy_i,ea,...,em) ;Ma -»^ t?(r;i,.. .,vy_i,eb,... ,em) ; Mb

§3

The reduction relation on memory object descriptions, e0 ; ßo ^D Ci';/Ji> is the transitive
closure of the single step relation. We say e\\i evaluates to VQ ;ß0 if c ;/z ^>D vo]ßo for some
vo G V. We can now easily describe the functions defined by our recdef construct. Namely
if ■& is defined in D and (y\,...,yn) is its binding specification then the corresponding
partial function

is defined by

■dD{vu...,vn ;n) ~>- v0 ;no = 0[vi,.. .,vn) ; ß »D v0 ; /i0
df

In the following we generally work with a fixed D and will omit the definition superscript
on the reduction relation.

3.3. Remarks

• It is easy to see that for any memory object description at most one of the single step
rules applies. Thus the single step relation is functional as is the corresponding evaluation
relation e ; ßo ^ v ; ßi.

• We use memory operation and function symbols in two contexts: in terms denoting
memory objects and in memory object descriptions. In the term context we include the
memory as an argument while in the memory object description the memory is not included
in the argument. For example, car(i,ß) is a term and car(l);ß is a memory object description,
and we have car (I) ; ß » car (I; ß). The two uses of operation and function symbols should
cause no confusion.

• The values of the binding expressions of a let construct are evaluated in sequence.
Then the free occurences of the variables in the body of the expression are replaced by the
corresponding values. The binding expressions are evaluated in their original environment
and not the one being created by the let . The seq construct provides for sequencing of
computations. It is similar to the PROGN construct of Lisp. We should point out that seq
is definable in terms of let since

seq(e0,ei,...,en)

is equivalent to

let {x0 ■<- e0,xi -<- ey,...,xn -«- en}xn

Definition by cases is handled by the if construct. Notice that as usual in Lisp any non-NIL
value of the test is considered true.

• We have not included a means of dynamically assigning values to variables, such as the
Lisp SETQ mechanism. For present purposes the inclusion of such mechanisms mainly com-
plicates the semantics. They become interesting in a computation theory where functions
can be returned as values.

A computation theory over memory structures.

• Our notion of memory structure is essentially that of Burstall [B], although the presen-
tations are somewhat different. Burstall treats computations described by flowchart pro-
grams and develops proof rules for proving properities of certain list and tree like memories.
We treat computations described by systems of recursive definition and prove properties of
the functions described by these computations. In this paper we treat a larger variety of
programs acting on much less restricted domains. We focus on mathematical properties of
the S-expression domain and do not develop any formal proof-rules.

3.4. Abbreviations

In addition to the basic constructs of our language, we also use constructs like and,
not, or and ifn. They are taken to be the usual Lisp abbreviations or macros namely:

and(el5e2) = if (ei,e2,NIL)
df

or(ei,e2) = if(ci,T,e2)
df

not(c) = if(e,NIL,T)
v ' df v '

ifn(Ctest)Ctherncelse) = i*(ctest •> Celsei cthen)
df

In addition we have a cond-like construct if s, where

**s(etesticthen • • • etest»ethen) T, *Mctest> cthen' **(etest i ethen • • • *Mctest > cthen »NIL) . . .))).
di

It is common in Lisp programs to test for atoms rather than pairs. The test atom is defined
by

atom(e) = not(cons?(e)).
df

Rather than explicitly use the recdef function we write function definitions in the tradi-
tional manner, only implicitly using the recdef operator. For example the definitions of
append and memq are

append(u,v) «— if (u,cons(cor(u),oppen<f(c<fr(u)),v)),v)

mem5'(element,list) +—

if(list,

if(eq(element, cor(list)),

T,
memq (element, crfr(list))),

NIL)

We are also somewhat liberal in what we shall use as variables, using words with suggestive
names. If D is the system of definitions

recdef ((/o,6s0,c0),...,(/n,f>Sn,en)),

10 §4

then we say D is a tail-recursive system if and only if no function symbol /,-, which is defined
in D, appears in D either in:

1. The test-expression of an if expression,

2. a binding expression of a let expression,

3. an expression other than the last in a seq , or

4. an expression that is an argument to a function or operation symbol in D.

It is well known that functions so defined can be implemented on low-level machines without
the use of a stack, see for example [Tu] or [F]. For example, the following definition of the
list length function

length(l) <- if (l,addl (length(cdr(l))),0)

is not tail-recursive. Whereas the following system, which defines an extensionally equiva-
lent function, is tail-recursive.

length(l) *- len{l,0)

/en(l,n) +- if (l,len{cdr(l),addl (n)),n)

4. More about Maexp.

In this section we study the particular memory structure M,txp that we defined in
section 2. It will be the principle memory structure that we shall deal with in the rest of
this paper. Henceforth all memory objects will be assumed to be in M,exp unless otherwise
stated. Hopefully by the end of this section any person, that has used Lisp or has been
subjected to a mathematical treatment of Lisp-like languages will have developed a practical
intuition about this memory structure model. We begin by showing how a memory object
v ;p G Maexp can be represented using the .traditional Lisp boxes and pointers notation.

For example if we let no be the memory:

{< /0,[F0(Ui] >,< /i,[BAR,/2] >,< /2,[BAZ,NIL] >}

then we can represent the memory object /0 ; no by the following diagram (which is taken
from [To]):

| f j •— ►! * i «-H »I » i «_i » s :

i I ♦

If rplacd(l0,l0) ', ßo ^ 'o ; Mi then the memory object /Q ; Mi looks like

More about M,esp. 11

•H-
"I !

Another example where two memory objects share structure is in \i<i, where /J2
is:

{< f0,[A,/2] >,< /i,[D,Z2] >,< Z2,[B,/3] >,< /3,[C, NIL] >}

/i2 itself can be represented by the diagram:

t ! ♦-

• ! •-

t^

♦ I •- -+! * I •—I ► Ml

We often use the suggestive boxes and pointers way of speaking about memory objects when
it suits our purpose. The boxes we call cells and a pointer is just another way of refering
to the a location or cell. Henceforth cell, location, and label will be used synonymously.

4.1. Viewing memory objects as labeled trees

There is a very simple way of regarding an S-expression memory object as a labelled
tree. For v ; /i € M,eip we define a partial function Xx.(v ; fi)x from T to V and its domain
6\x.(v,n), by induction on T:

. \ _ I v if <7 = a, the
{V]ß)a~\n{{v\ßU)U Ha = cTooi,

empty word in T
t € 2 and (v ; ß)ao € L

When refering to tree function \x.(v ;ß)x we generally drop the A and simply write (v ;/x).
Thus, (v ; p) is the least function from T to V satisfying:

■ D € <5(tr,»i) and (v ; p)a = v

and if a G \v-%v.) and (v ; p)a = / G L then

12

■ croje 6(v;p)> and

■ (v;M)<Toy =/x(/)iy for j €2

Our notation in this regard is similar to that of [Mo].

We call (v ; p) the derived tree function, or the labelled tree that is defined by v ; p.
Note that the following facts are true for these functions.

Proposition 1: For any v; p, <$(u;At) is a non-empty subtree of T, with the property that
if a oj e <5(U.M) for j E2 then (v ; p)a G L. If a0 o 0\ G <5(u;M) then

1. <7o e <5(u;Ai) and iTi6^(„^,ori

2- (v;/!)*,,^! = ((v ;/*)*„ ;/*)»!

nthcdr example: Consider the following well-known Lisp program

nthcdr{n.,1) +- if(eq(n,0),l,nthcdr(subl(n),cdr(l)))

The significance of this function is expressed by

nthcdr(n,l) = (I ;/i)i» ; p

when both sides are defined, or equivalently when either is defined.

We will sometimes refer to a (when a is in the domain of the derived tree function of
a memory object u;/i)asa car-cdr chain in v ; p, for the obvious reason that (v ; p)a is
the location or cell one obtains by a suitable composition of the memory operation car and
cdr. Thus we can define the notion of the cells of a memory object which are accessible by
car-cdr chains.

We define CellsM(v) to be set of cells that are reachable from v ; p by travelling along
any car-cdr chain, and Cells^(v) to be set of cells reachable from v ; p by travelling along
any non-empty car-cdr chains. Thus

Cells» = {l€L\(3a)(vtp)a=l}

Cells<(V) = {{ G LI (3a ± u)(v ; p)a = 1}
df

Notice that we could also define CellsM(u) to be the smallest subset X of 6^ such that by
letting px be the restriction of p to X, we have

v;pxe Meexp.

Consequently, if we were only interested in the memory object v;p it would for most intents
and purposes be reasonable to assume that Cells^(u) = 6^.

More about Meexp. 13

We often wish to define a set of cells (or values) that have a particular property and
are reachable from a given cell via paths which only pass through cells with this property.
The following constructions give a general way of making this type of definition. Let $,$»
be predicates on Meexp, for i G 2, then

■ TC(v ; ß, iff, $o>$i) to be the smallest set X such that

1. If ^(v;fj) then veX

2. If / G X and $0(l; ß) then (I; ß)0 G X

3. If / G X and $i(/; ß) then (/; ß)i G X

■ STC(u ; ß, $o>$i) is the smallest set X such that

1. If / G X or / = v then if $0(/; M) then (l ;ß)0eX

2. If I G X or / = v then if $i(Z;/x) then (/ \ß)leX

For example

CellsM(v) = TC(t;;/i,tfL,$L>$L) and Cdls<(v) = STC(v ;**,*£,*[)

where D ; /i £ $[iff i; € L and (// ; v)^ € L and D;/J6 $L iff"6L. We shall make
frequent use of these constructions in later sections. We sometimes write TC(u ; ß, $) or
STC(v ; ß, $) when all three predicates are the same. TC stands for transitive closure,
while STC stands for strict transitive closure.

4.2. Equivalence relations on memory objects

Often a memory structure contains more detail than is necessary for the task at hand,
for this reason we define two notions of similarity. The first is the most obvious. We say
two memories ßo and ßi are isomorphic, written ßo — ßi, if there is a bijection, h, from
V to V which is the identity on A and maps L to L with the property that h o ß0 = ßx.
Since we mainly deal with memory objects not simply just memories, we also define the
corresponding notion for memory objects. For this we use the tree-function (v,ß) associated
with v ; ß.

Definition of isomorphic memory objects: J£vo,..,,vn]ß, VQ ,..., v* ; ß* € Ml«ezp
we say VQ ,... ,vn \ß is isomorphic to VQ ,..., u* ; ß*, written

v0,...,vn ;/i~ Vo,...,< ;ß\

if there is a bijection h: V —* V which is the identity on A, maps L —<• L and is such that

ho(vi ;ß) = {vi -ß*)

as partial functions, for every i 6 n + 1.

Notice that if Cells^Ui) = 6ß., for i G 2, then saying that VQ ; ßo — v\ ; ß\ is the same
as saying that ßo S /zx via h where h has the additional property that h(vo) = v\. Another

14 §4

important point to observe is that S-expression memory operations preserve isomorphism.
For example,

l,v;fi9il*,v*;n* —»■ rplaca(l,v ;//) Si rplaca(l* ,v* ;//*).

Note that

V0\H-VQ\H* A ... A vn ;/x-< ;H* ■/* v0,.. .,vn ;H Si V*Q,... ,v*n ; p*.

Another equivalence relation that is not quite as useful in this paper, but does have a
special significance in the subject is that of Lisp equality.

Definition of Lisp equality: We say v0 ; Ho and vi ; ^i are Lisp equal, written

VQ ; Ho = vi ; fii,

iff (vo ; fi0) and (vi ; Hi) have the same domains and (v0 ; Ho)a — a when and only when
(vi ;Hi)<T = a, for<T€5(„.Ml), a € A.

Notice that v0 ;/uo = i>i; Mi means that vo ;HO and Vi ;HI have exactly the same car-cdr
chains. Also, Lisp equal objects print the same (for typical printing algorithms). As we
have already mentioned:

Proposition 2:

1. = and Si are both equivalence relations.

2. If v0 ; Ho Si v\ ; /zi then Vo ; Ho = *>i ; Mi > the converse is patently false.

3. If D is a definition and d is a function defined in D then the partial function determined
by this definition preserves isomorphism. By this we mean that if v0,..., vn ; H —
«0,..., v* ; H* then d\v0,..., vn] ; H — # K»• • • > un] i M* whenever either (equivalently
both) denote.

We should also point out that more model theoretic definitions of these two equivalence
relations are possible, but we shall not do this here. For v0, vx G V we say v0 = t>i iff either
vo and vi € L or else i>o = Vi. Using this we have the following pointwise characterization
of =

Proposition 3: The following are equivalent

l. vo ;HO = VI;HI

2- 6(v0;no) =*(«I;MI) =1 and V^^7 (v0 ; Ho)<r = fa ;Mi)<r-

Notice that proposition 1 together with proposition 3. implies

Proposition 4: If /0 ; H and lt ; H £ Maexp then the following are equivalent

1. l0 ; H = k) H

2. (/0; H)% ; H = {h ;H)X;H for i € 2.

In other words two S-expressions are Lisp equal iff their cars and crfrs are.

§4 More about Msexp. 15

4.3. Some sub-domains of MBtxp

We now define some important subdomains of Meexp, and terminology that we use
correspondingly.

Definition of well-founded S-expressions: We say that v ; ß is a well-founded S-
expression, written v;/x G Mwf,eXp, if ?>(v;ii) is a well-founded tree. Here are several equivalent
ways of expressing well-foundedness. One is

v <£ Cells<(t/) A (V/ G Cells<(v)){l & Cells<(/)).

Thus if/;// G Mwftexp then all car-cdr chains in l\(i must eventually terminate at an element
of A. A second equivalent definition is that the derived labelled tree is finite. It is important
to notice that if /* G Cells^(Z) and /; \i G Mwf,exp then

Cells^*) C Cell8/1(0

with equality holding only when /* = /. Also notice that when I; p G Mwf,exp then

CellsM(/) = Cells<(/)u{/}

and this union is disjoint, while disjointness is not necessarily true if we only know that
/ ;/z G Msexp. We make two last remarks concerning Mwftexp. Mwf,exp factored out by = is
canonically isomorphic to the structure one obtains by closing A under a pairing operation,
see for example [Mo]. Secondly, for any memory object v ; p G Mwf,exp there is a closed
term e, i.e one with no free variables, which contains only the operations car, cdr and cons,
and of course no function symbols, such that e ; 0 » v* ; n* and v ; \i S v* ; /i*. Here 0
denotes the empty memory. If we do not include the let construct in the set of terms, then
we can only obtain = in this last result.

Definition of lists: There are two different notions of list depending on whether one
allows cyclic lists, in this paper we will refer to the non-cyclic version as Mj,-,t and the
possibly infinite variety by Meu,t-

v;ne Mii,t <-► (3n G N)(v ; /i)i» = NIL.

Thus I; ß is in Maat iff some crfr-chain leads to an atom and this atom is NIL.

v;ne Meliat <-> (Vn G N)(ln G <5(v;/i) A (v ; n)ln G A -* (v ; AOI« = NIL).

A simple example of a function on Mnat is length, (defined in section 3.4). Its basic property
is that for any v ; fi <E M««* we have that {v ; /.i)^.„„«M») = NIL. Later on we will describe
a length function that is defined for all of Meu,t. To make talking about lists somewhat
easier we have the following notation. The set of cells that are reachable from a non-NIL
elist I; fi G Meuat only by using the the function cdr is called the spine of the list. Namely

SpineM(0 = {({ ; fi)ln | ln G S(lili)} - {NIL}.

16 §4

Suppose /o ; po £ ^u»t is such that

sPineMo(M = {k-'-U}

with po(k) = [vi , /»+i| for i En and /io('n) = [v* , NIL]. Then we say /0 ; po represents
the Lisp list (vo v\ v<i ... vn). We call the Vi the elements of the list fo ; /io and put
Elements,* (fo) = [vo, • • • ,vn]- We say l0 ; ^0 is a pure list if SpineMo(/o) is disjoint from
the set

U Cells,* (t*).
u<£EIementsM0 (J0)

Thus a pure list is determined up to isomorphism by the sequence of its elements.

4.4. The Equality Program

We finish of this section by showing that our notion of Lisp equality agrees with the
usual notion on Mwftexp. Consider the following well known program.

equal(u,v) <—

if (or(atom(u), atom(v)),

e?(u,v),

and(egruo/(car(u), cor(v)),

equal (cdr(u),cdr(v))))

Theorem 1: equal is a total function from M^j to Mwfsexp, having values amongst
{NIL,T}. Further, if v0 ; p, vx ; p e Mwf,exp then the following are equivalent:

1. equal{vo,Vx) \p » T;p

2. vo ; p = vi ; M

Proof: We prove the theorem by induction on

r{v0,vi ;p) = |CellsM(v0)| x |Cells^(vi)|.

Base case: r(v0,vi ; p) =0. In this case v* G A for at least one i E 2, and so

equal(vo,Vi) ; p » eq(vo,Vi) ; p.

Since we have that eq(vQ, vx); p » T; p iff v0 = vx and v0 ; p = ui ; /z iff v0 = vi the theorem
is true in this case.

Induction step: Suppose r(v0,vi;p) > 0 and that the theorem is true for any v2,va;p0 €
^wftexp of less rank. Thus v0 and vx € L and

equal(v0,vi) ; p » SLnd.(equal(car(v0),car(vi)),equal(cdr(v0),cdr(vi))) ;p

§5 Four simple correctness proofs. 17

If we let via - ß(vi)io and vid = A*0>»)ii, for * <= 2 then we have

equal(vo,Vi) ; ß » a.nd(equal(v0a,via), equal(cdr(v0),cdr(vi))); ß.

Now since v< € Mwftexp we have that r[v0a,via ; ß),r(v0d,vid \ ß) < Kvo.vi ! M)- Consider
two cases.

Case 1: U v0 ; ß = vy ; ß then by proposition 4. i>oa ; ß = ^io ; A4 and vo<* ; M — vid ', ß- So

egua/fvo,^) ; ß » and(T,egua/(cdr(v0),cdr(i;i))) ; ß » egua/(t;o<i,vi<i) ; M » T; JU.

Case 2: If u0 ;/i ^ ui ;/x then again by proposition 4 either t>0o \ß ^ ^io ;/iorti0(i;/i^ Uid ;ß.
Suppose voa ; ß j£. via ; ß then

eg«o/(u0,vi);// » and(NIL, egua/(cdr(v0),c<ir(t;i))) ;/x.

However, if v0a ', ß = ^io ; M> then

e^«o/(uo,vi) \ß » eguo/(cdr(i;o),cdr(vi)) ;/i 3> NIL ; ß.

ÖTheorem 1

One final remark is that the above proof can easily be modified to show that the more
efficient version of equal given below also satisfies this theorem.

equal{u,v) +—

if (e?(u,v),T,if (or(atom (u),aiom(v)),

NIL,

and(equal(car (u), car (v)),

equal(cdr(v),cdr(v)))))

5. Four simple correctness proofs.

In this section we present four well known Lisp programs, and prove theorems asserting
their correctness. None of the proofs is in any way deep, the main purpose being tutorial, in
that we show both how to formulate correctness results and how they are proved. The reader
who is not so interested in methodology but rather results should simply skip the proofs, as
the specific techniques of proof in this section are not duplicated in the subsequent, more
complex proofs.

18 §5

5.1. Example 1: Inplace Reverse.

In this example we prove the correctness of a destructive reverse program, the so called
inplace reverse.

inplace:reverse(u) •*— t*n:rc«(u,NIL)

n:rev(u,v) ■—

if(u,

let{tl -<- c<fr(u)}seq(rp/ac</(u,v),in:ret;(tl,u)),

v))

Clearly inplace-.reverse^SIL) ; fi » NIL ; ii. In general inplace:reverse reverses a list by
reversing the pointers along the spine and changing nothing else. This is expressed by

Theorem 2: If Z0 ;Mo e Miiat represents the Lisp list (i>0 vi v2 ■ ■. vn) with SpineMo(Z0) =
{lo...ln} then

inplace:reverse(l0); Ho » /„ ; nn+i

where ln ;/*n+1 represents the Lisp list {vn vn-i ... v2 vi v0), Spine^B+l(Zn) = {/„.. ./0},
Hi = setcdr(l0, NIL ; p0), and /z<+1 = setcdrQi, /<_! ; /*,•), for i € n + 1. In addition
V> = ^n+x with Z^n+i differing from /z0 only on {/»}<en+1.

Corollary 1: inplace:reverse(inplace:reverse(lo ; Ho)) = lo \ßo

Notice that unless /o ; /zo is a pure list we will not have that u,-; Lin+i = u,-; /zo, in other
words inplaceireverse may alter the elements of the original list. However a little careful
thought on the matter will show that there is no particularly obvious candidate for the
epitaph reverse of a list in such structure sharing situations.

Proof of Theorem: We will show by induction on i that

PI. in:rev(l0,KIL) ;/u0 » in:rev(li+l,U) ;ßi+1 » tn:re«(NIL,/n) \iin+1

P2. i<j<n^ p0(lj) = m+iQj)

P3. 0 < i < i - Mt+1 (/y) = H+1 (/y)

Note that

. for 0 < j < n noilj) = [v3-,li+1] and nJ+i{l}) = [vy,/y-i]

• for any / ; /z € Mjj«t with u ; /z = cdr(/) ; iz we have by computation

in:rev(l, v) ; LI^>

» if(Z,let{(i -4-cdr(l)}[rplacd(l,v),in:rev(ti,l)],v) ;LI

» let{ix -<-cdr(Z)}[rp/acd(/,v),m:rev(fi,Z)] ;/z

3> m:reu(u,i) ; setcdr(l,v ; /z)

§5 Four simple correctness proofs. 19

. since IQ ; ßo € Muat we have li ^ lj, whenever * ^ j, and i,j G n + 1.

Case i = 0: By computation, since li ; po = cdr(lo); ßo and ßi = setcdr(lo,HIL ; /io) we
have

m:rev(/0,NIL) ; /z0 > m:rev(/i,.Zo) 5 Mi

Thus PI holds for i'. = 0. Since //i differs from ßo only on fo we have that

ßo{le) = Mi(M for 0 < s < n

so P2 holds. P3 is vacuous.

Induction step: Suppose 0 < i< n and

m:rer;(/o,NIL) ; ßo 3* in:rev(li,li-i) ;m

with fij satisfying P2 for i-1 < j < n and P3 for 0 < j < i-1. Thus /t-+1 \ßi — cdr(li)\ß0 =
cdr{li) ; /z». By computation again we have

in:rev(liJi-i) ; ti» ^ m:rev(Zj+i,/j) ;M»+I

where /A+I = setcdr(li,li-i ; /i^). P2 and P3 hold for M»+I because it only differs from /z»
on /^.

Termination case: So far we have shown that for 0 < * < n

m:reu(Zo,NIL) ; z/o S> in:rev(li,li-i) ; /ij

with (ij satisfying P2 for i < j < n and P3 for 0 < j < i. Thus P2 and P3 are proved and
cdr(ln) ; ßn = NIL ; ßn. By computation we have

m:rev(/„,/n_i) ; ßn » m:ret;(NIL,/n) ;/in+i

where pn+i = setcdr(ln,ln-i ;ßn).

DFI,P2,P3

The theorem now follows from the above and the simple observation that

inplace:reverse(lo) ; ßo 3» «n:ret/(/o,NIL) ; ßo S> /„ 5 Mn+i •

^Theorem 3

20 §5

5.2. Example 2: Iterative Append.

We now prove the correctness of an iterative append program. It constructs a list with
the same elements as its first argument and destructively appends the second argument to
the end of this new list. It does not alter the original memory on any pre-existing location,
thus it is sometimes called a locally dirty program.

iterative:append(vi,v) <—

if(u,

v,

let{w-t- cons(cor(u),v)}»'i:opp(v,w,w, cdr(u)))

ti:opp(v,val,w,u) *—

if(u,

val,

it:app(v,

val,

cdr(rplacd(v, cons (car (u),v))),

cdr(u)))

Clearly iterative:append(YIIL,V);/J»II;/I.

Theorem 3: If l0 ; Mo £ Muat represents the Lisp list (v0 vx v2 ... vn) with spine
{l0 .. ./„ } and v ;ii0 e Maexp then

iterative:append(l0, v) ; MO » % ;Mn+i

where 6lin+l - <5Mo U {/g, ...,/*} and /? # ^ £ 6^ for i 9t j, i,j e n + 1. Furthermore,

!• Mn+i(',*) = [v<, /-+1] for i<n

2- Mn+i = Mo on ^0.

Corollary 2: If /0 ; Mo is as above and v ; MO represents the list (w0,..., wm) with spine
{/n+i .. .ln+m+i} then iterative:append(l0, v) ;MO » /Q ; Mn+i and Z5 ; Mn+i represents the
list (v0,...,vn,w0,...,wm) with spine {*o •••£ ln+i . ../n+m+i}.

Proof of Theorem 3: For 1 < i < n we define m and M,* by Mi = Mi and for i > 0
/,* ; M,* = cons(vi,v) ; Mi and pi+1 = setcdr(l^_l,l^ ; M,*)• We prove by induction on i that
for i < n

PI. iterative:append(l0,v) ; MO » it:app(v,l^,l^,li+1) ; fii+l

P2. Mi+i = Mo on «5^

where by abuse of notation we let ln+1 = NIL. Note that according to the definitions,
^,.+ 1=^U{/*}with/;^^,..

§5 Four simple correctness proofs. 21

Base Case i = 0: In this case we have by computation

iterative:append(lo, v) ; po 3>

:» let{w -<- cons(car(l0),v)}it:app(v, w,w,cdr(l0)) ; p0

y2>it:app(v,lo,lo,li);ni

where IQ ; pi = cons(t;o, v) ; po.

Induction step: Suppose PI and P2 hold for 0 < i' < i Then by computation

i'£:app(t>,/;$,/,*_! ,/;) ; Hi »

» i'f:app(v,^iV«+i) I seicdr(/;_!,/,- ; p,*)

= it:app(v,lo,lt,h+i) ;p*+i

and clearly pj+i satisfies PI and P2. Dpi,p2

Now 2 is clearly true so it suffices to show 1. Since m+i differs from m only on £_i and
on Zt* we have

M»+i (C-i) = • • • = ßk{l*i-\)

for * > 1 and k > i + 1. Thus p„+i(/<) = [vuh+i] for i < n.

^Theorem 3

5.3. Example 3: A Sophisticated Length function.

In this example we deal with a length function that not only calculates the length of a
list, but also detects whether the list is infinite. A reference to it may be found in [C].

elength(l)+-elen(l,l,0)

e/en(slow,fast,n) <—

if (fast,

if(cdr (fast),

if(eg(fast,slow),

if(eg(n,0),
elen(cdr (slow), cdr (cdr (f ast)),n + 2),

INFINITY),

elen(cdr (slow), cdr(cdr(i ast)),n + 2)),

addl(n)),

n)

The key fact about elength is given by the following theorem.

22 §5

Theorem: If v ; ß € Mtliat then

elength(v) ; u = (len9th(v) \ß üv;ße Mliat
I INFINITY otherwise

Proof of theorem: To prove that v; p € Mli8t implies that elength(v); /z = length(v); /*
we leave as a simple exercise. We do the more difficult case. Suppose that

l0 \ß eMeii9t -Mliat.

This assumption implies that for n€N,ln € fyo;/i) and {l;n)i" € L. Consequently, letting
k = {k ; M)I*

we have by the finiteness of 6^.^ that

{[mo,mx] € N(2) | mx > 0 and imo = /mo+mi }

is non-empty. Now choose [mo,mi] to be the lexicographically least element of this set, and
put x to be the smallest solution to the integer equation

0 = m0 + x [mod mi]

Now observe that while l3- ^ l2]- for 0 < j < i we have that

elen(l0,l0,0) ; ß » den{li,l2i,2i) ; ß

Letting k = m0 + x we claim

1. lk = l2k, and

2. /y 7^ l2i for 0 < j < k.

It is easy to verify that, by our choice of notation, 1. is equivalent to

k = 2k [mod m{\

which is true by virtue of our choice of x. Now suppose there was a j with 0 < j < k and
lj = hj, then by our choice of notation we would have

0 = j [mod mi}

Now if j < m0 then we would contradict our choice of [mo,mi], on the other hand if
m0 < j < m0 +x then we would contradict our choice of x. Consequently no such j exists
and we are done.

0Th eorem

§5 Four simple correctness proofs. 23

5.4. Example 4: The traditional recursive copy program.

In this example we deal with our first copying algorithm, the traditional recursive one
that one learns about in introductory Lisp courses.

recursive:copy(u) +—

if (atom (u),

u,
cons(recursive: copy(car (u)),

recursive:copy(cdr(u))))

We leave the proof of the following as an exercise as it is a simple induction on |Cells<(OI-

Theorem 4: If I; n € Mwf,exp then

recursive:copy(l) ; ^ » /* ; n*

such that

1. I; ß = /* ; /i*

2. CeHB„(Z)nCellv(Z') = 0

3. iCells^OI < |CellsM.(/*)|

In general this is not the most useful copying algorithm. It has three obvious defects.

• Firstly recursive:copy only constructs a copy which is Lisp equal (=) but not necessarily
isomorphic (s) to the original. In fact the copy obtained by using this recursive program
is the least compact S-expression (up to isomorphism) which is Lisp equal to the original.
By least compact we mean that the copy will possess no cellular structure sharing. So, for
some suitable / ; fi we actually have that

|CellsM-(r)| = 2lCells"(')l - 1.

• Secondly, recursive:copy will not terminate on, let alone copy, cyclic S-expressions.

• Finally, its recursive nature means that it will use up stack proportional to the maxi-
mum depth of its argument, and so on large structures it may run out of free storage. Also
since it does not recognize shared structure it will often duplicate calls to itself.

One of the aims of this paper is to prove the correctness of a copying algorithm that
does not have these defects. We should remark that this copy algorithm does have one nice
theoretical feature, namely

Proposition 5: For any v0 ; p, vi ; /x £ Mwfeexp we have vQ ; n = Vi ; n if and only if
recursive:copy(vo) ; /i — recursive:copy(v\) ; fi.

24 §6

6. The Correctness of the Robson Marking algorithm.

The first program that operates on MBexp which we shall deal with is a marking algo-
rithm. We have called it the Robson marking algorithm since it is essentially phase one of
the Robson copying algorithm, [R]. It is interesting in its own right since it is a more sophis-
ticated algorithm than the Deutsch-Shorr-Waite marking algorithm, [D], [SW]. Although
in our domain Macxp there are no mark or field bits, this is of no particular importance
since we shall use abstract syntax [Mc] to hide this fact. The advantage of this is that we
can isolate the necessary properties of the implementations of the abstract syntax that are
required in the correctness proof. Thus, given a particular implementation of the algorithm
we can simply check the correctness of the program by checking that the abstract syntax has
the desired properties. We shall only be interested in one particular interpretation in this
paper since the second phase of the Robson copying algorithm makes use of our particular
implementation. An elegant treatment of the Shorr-Waite marking algorithm in a world
where locations have mark bits can be found in [T].

The Robson marking algorithm, like the Deutsch-Shore-Waite marking algorithm, uses
pointer reversal to avoid using an explicit stack. Pointer reversal is a very powerful technique
that is used in destructive memory programming. The idea is quite simple; the program
destructively alters the structure it is operating on to store the information that a stack
would normally be used for. In this case the algorithm scans the graph in a left-first fashion,
marking cells as it proceeds. Since the cells are marked when they are first visited, looping
or repeatedly scanning the same subgraph is avoided. An succinct treatment of pointer
reversal or pointer rotation, as it is sometimes called, may be found in [S], although the
notation in that paper has an unfortunate tendency to confuse control and data.

6.1. The Robson Marking Algorithm

In the Robson marking algorithm the process of marking a cell consists of allocating
a new cell and moving into this new cell the contents of the cell being marked. The cell
being marked is then updated so that its car contains a mark and its cdr points to the new
cell. A mark is an object specially allocated before marking and so recognizably not part of
the structure to be marked. We use seven different marks to store more information than
just simply whether or not the cell has been seen before. We shall denote these marks by
ER,EL,E10,M00,M01,M10,M11. Their meaning roughly being described by

EL - Exploring the left hand side of the cell. If the car is not terminal, then while it is
being marked the pointer to it will be utilized to store the previous stack, the cell itself
then becomes the current stack.

E10 - The left hand side is atomic or has been visited before, now exploring the right hand
side.

ER - Exploring the right hand side after having explored the left hand side, which was
neither atomic nor already marked. If the cdr is not terminal, then while it is being
marked the pointer to it will be utilized to store the previous stack, the cell itself then
becomes the current stack.

§6 The Correctness of the Robson Marking algorithm. 25

Mil - Both the left and right hand side are either atoms or cells that were visited earlier in
the left first scan, such cells are called terminal.

M01 - Only the right hand side was terminal.

MIO - Only the left hand side was terminal.

MOO - Neither the left nor the right were terminal, and both sides have been completely
investigated.

In addition there is a mark ALPHA that indicates the bottom of the stack, initially also the
top. A cell that is marked either EL, ER or E10 resides on the stack, the inverted pointer
chain. Marks may be either atoms or cells. The crucial point is that they must be distinct
from one another and disjoint from the structure being marked. This will be assumed in
the following.

The actual definitions of the Robson algorithm are:

rmarJfc(s) «— it(atom(s),s, markcar^B,ALPHA))

markcar (s, stack) +—

[mkmark(s, EL),

let{tl -*-a(s)}

if (£ermtna/(tl),

[setm(&, E10), markcdr (s, stack)],

[seta(s, stack), marfccar (tl,s)])]

markcdr (s, stack) +—

let{t2-<-d(s)}

if (terminal(t2),
if s(eq(ER.,m(s)),{setm(ß,MOl),popstack(s, stack)],

eg(E10,m(s)),[seim(s, Mil), popstack(s, stack)])

[setd(s, stack), markcar(t2,s)})

popstack(s, stack) *—

if(e?(stack,ALPHA),

s,
let{tl -<- o(stack),t2 -<- d(stack)},

if s(eg(EL,m(stack)),
[se£m(stack,ER),se£a(stack, s),marfccdr (stack,t'l)],

eg(ER, m(stack)),
[setm(stack,MOO),setrf(stack,s),pops«acfc (stack, t2)],

eg(E10,m(stack)),
[seim(stack,M10),se£d(stack,s),pops«acA:(stack,t2)]))

26 §6

The program as written above is a tail recursive definition, which uses the abstract
syntax

m,a,d,seta,aetd, mkmark,aetm, marked, terminal

The function mkmark does the job of allocating the new cell and placing the contents of
the original cell in it, altering the original so that its car contains the appropriate mark and
its cdr the new cell, a and d then access the old car and cdr, while seta and setd update
them, setm just replaces the mark without allocating any new cells, marked determines
whether the cell is marked and m returns the mark, terminal just checks whether a cell is
terminal, namely whether it is an atom or an already marked cell.

To be explicit we have the following definitions of these functions.

m(l) <- car(l)

o(l)«- car(cdr(l))

d{l) <- cdr(cdr{l))

mkmark(l,m) *- let{t2 -+- car(l)}[rplaca(l,m),rplacd(l,cons(t2,cdr(l)))]

setm(l,m) «— rplaca(l,m)

seta(l,x) <— rplaca(cdr(l),x)

setd(l,x) <— rplacd(cdr(l),x)

marked(l) <- memg(car(l),(ER,EL,E10,M11,M01,M10,M00))

terminal(l) <— or(a£om(l),marked(l))

The final product of this program will be specified in more detail later, for now the
following is sufficient. After rmark-ing an S-expression, all cells accessible from the S-
expression have been destructively altered so that their car contains a mark and their cdr
points to a new cell that contains the original contents. In other words if rmark[l) ;p » v;p*
then for /, G CellsAl(/) we have

carQi) ; p » va ; ft A a(/<) ; p* » va ; /** and cdr(li) ; ß » vd ; p A d(li) ; /u* > vd ; /z*.

Definition of (/ ; n)a, (I ■ p)d: We write (/ ; p)a to denote the value of a[l) ; /x, (I; p)d

that of d{l) ; p, and (/ ; p)m that of m(l) ; p. Thus, given the above interpretation of the
abstract syntax, when a, d or m appears as the argument to (I ; p) it can simply be taken
to denote 10, 11 or 0 respectively. Often when p is fixed by some context we simply write
va and vd leaving p as understood.

Aside: As an aside we describe a memory structure over which we can model the usual
low level implementation of a marking algorithm, such as is used in mark and sweep garbage

§6 The Correctness of the Robson Marking algorithm. 27

collection. In this version we work over a memory structure that one obtains by adding a
mark bit to a cell, Mmaexp, in short.

Mm.„P = {/ieM(fl,L)l^fc->vP']}

®mscxp = ®etxp U {m, setm, mkmark }

Over this structure car and cdr access the second and third elements and m returns the
first, cons returns a new label with the mark bit set initially to a default value NIL. setm
and mkmark simply update the first bit and rplacx updates the cxr part for x E {a,d}. In
this version of the program the result of marking v ; ß leaves the car-cdr structure of v ; ß
unchanged, the only modification is that the mark bits in the structure now contain the
appropriate information concerning the left-first spanning tree. Using the above notation
we have that in this version

M(0 = [Q;ti)m, {i;ß)a, (/;M)<*]-

We now return to the subject at hand. Here and elsewhere we shall make a habit of
ignoring the value returned by mkmark, seta, and setd, treating them as being analogous
to setcar and setcdr. This should not cause confusion since none of the programs in this
paper will ever make use of the value returned by such an operation. The following are the
properties of the abstract syntax that are required in the proof. For expository purposes
we give them names.

Cancellation: For x e {a, d} and I ; \i marked we have

setx(l,v2 ;setx(l,vi ;/z)) = setx(l, v2 ; ß)

and
setm(l,v2 ; mkmark(l, Vi ; ß)) = mkmark(l, v% ; ß)

Absorption: If x e {a, d, m} and v = {I; n)x then setx(l, v ; /z) = ß.

Commutativity: If x, y € {a, d, m} with x ^ y when 1 = 1*, 1,1* are both marked, and
neither (l;n)i = I* nor {I* ;fi)i =1 then

setx(l, v ; sety(l*, v* ; ß)) = sety{l*, v* ; setx(l, v,ß)).

Access: Finally for x e.{a,d,m) and / marked we have

x(l) ; setx(l, v ; ß) » v ; setx(l, v ; ß)

and when / is not marked

m(l) ; mkmark(l, v ; ß) » v ; mkmark(l, v ; ß)

28 §6

6.2. Methods of recursion and proof

We now commence with the preliminaries that are required to prove the correctness of
the Robson marking and copying algorithms. We first define the notion of a spanning tree
of a graph. The idea here being that to define a function recursively on a graph one must
choose a path and an order in which to visit the cells, and to prevent looping one must
have some means of knowing when to stop. The first problem gives rise to spanning trees
whilst the second is handled, as we have already mentioned, by modifying the cells as we
visit them so that we can recognize an already visited cell when we see one. Of course these
two problems are not unrelated.

In the correctness proofs, of both the copying and marking algorithms, the essential
idea is the same. We define a memory transformation recursively, which under certain
natural pre-conditions corresponds to the result of a simple recursively defined function
in our computation theory. These simple programs are quite inefficient in the sense that
they are not tail recursive and use up stack proportional to the size of their argument.
They do however have the advantage that they are very easy to to understand. We then
prove, again under natural pre-conditions, that the simple recursive program computes
the same partial function as its pointer reversing counterpart. This is done by using the
transformation mentioned above. These pointer reversing programs consist of a set of
mutually tail recursive functions and thus use no stack. We should emphasize that we have
included the simple recursive versions purely for motivation. They are in no way logically
necessary for the actual proofs.

All proofs, not surprisingly, are by induction. Consequently we must find some measure
which gets smaller as the program progresses. It is here that the TC construction, of section
4, comes in handy. In both cases we can use a variant of TC to define a type of subset, of
Cells<, that measures the progress of the algorithms.

6.3. Spanning trees

For /; ß e Maexp we say that X is a connected subset of CellsM(/) if X is the image of
a subtree of T under the map (/;//). So, for example, subsets defined by the TC operation
are connected. For X, a connected subset of Cells/i(/), we define a spanning tree for X at
/ ; ß to be a set S c T having the following properties

1. (\/veX)(3\aGS)(l;ß)a = v, and

2. S is a subtree of T.

For convenience we say that a cell /, is left (right) terminal with respect to a spanning tree
S (at l\ß) if 3CT G S k = (l\ß)a but eroO (<rol) is not an element of 5. For example in the
Robson marking algorithm we use terminal to mean terminal with respect to the left-first
spanning tree. There are various well known spanning trees for graphs, [A]. We shall be
using the left-first spanning tree in this paper. The left-first spanning tree of Cells^u) can

The Correctness of the Robson Marking algorithm. 29

be defined as follows. For I € CellsM(t;) the function Left„;|i:[CellBM(i;) ->- T] chooses the
least path in fj, from v to I with respect to the Brouwer-Kleene ordering (<).

Left „.,»(/) = a -> {v;n)a=l A V<r0((v; n)„0 =1 -> a < (To).

The left first spanning tree of v ; fi is then the image of Leftv;M and is denoted by Av;M.

A„.„ = {Left^OUe Cells»}
df

Now given that 5 is a spanning tree for X at / ; p and l0 € X, we say that li lies below l0

in S if 3cr0,o"i E T such that

1. cr0,o-i € 5

2- (/;M)<7i ='t, for t€2, and

3. (To < <Ti in T.

Similarly we can talk about /0 being above, to the left, or to the right of l\ in S. We also
put

S(l0) = {h | h lies below l0 in 5}.

Observe that S(l0) C X and that if k lies below l0 in 5 then 5(/x) C 5(Z0) with equality
holding only when l0 = h-

6.4. The recursive Robson marking program and transformation

We now define the simple recursive program rec:rmark, a straight forward left-first
recursive marking algorithm. Thus rec:mark traverses the graph by following the left-first
spanning tree, A, in the Brouwer-Kleene ordering.

rec:rmark[s) <— if (atom(s),s, [rec:rmarfci (s),s])

rec:rmarkl{e.) ■*—

[mkmark(s, EL),

if (icrmi'na/(o(s)),

if(terminal(d(&)),

se£m(s,Mll),

[setm(s,M10), rec:rmarkl (rf(s))])

[rcc:rmarA;i (o(s)),

if (£ermina/(<f(s)),

se£m(s,M10),

[$etm(s,UOO),rec:rmarkl(d{&))])])}

The set that we use induction on to prove properties of rec:mark and of its pointer
reversal counterpart is UnmarkedM(Z). It consists of all those cells that are unmarked and
are reachable from / via paths through unmarked cells.To be precise:

30

Definition of Unmarked^(/):

UnmarkedM(/) = TC(/;/i,->$r)
df

where $T(U ; /i) iff v G A or $M(U ; /-0, and $M{V ; AO iff marked(v) ; /x » T ; /z.

The transformation on memory objects that we use to prove that rmark and rec-.rmark
agree can now be defined. We first state some assumptions that are needed to ensure that
the transformation is well-defined. Since we will often make use of these assumptions we
give them a name, RM condition.

RM condition: A is the left first spanning tree for UnmarkedM(/) at l;/i, /* ;/i* is such
that /* G UnmarkedM(/), and p* = \i on all cells, including /*, that lie below /* in A.

Definition of RM: We define the transformation RM^. (/*) on memories recursively as
follows:

RM£.(H

' mkmark(l*, Mil ; p*) if/* is both left and right terminal w.r.t A
RM^Jtmorfc(J.M01;M.)(/*) if/* is right but not left terminal w.r.t A.

^mtmarit(i',KiO;/i')K) ^'* is left Dut nofc right terminal w.r.t A.
RMRMi ,j. >(/*,) if /* is neither left nor right terminal w.r.t A.

where n" = mkmark(l*,MOO ; /i*) and /*. = (/* ; p*)x for x G {a, d}. We have the following
simple properties of RMM- (/*)

Proposition 5: If A is the left first spanning tree for Unmarked^/) and /* ;/i* satisfies
the RM condition, then

1. RMM. (/*) agrees with fi* on all locations not in UnmarkedM(/*)

2 (/< ;RM^.(/*))a = (/< ;/i*)0 if k G Unmarked^/*)

(li ;RM^{l*))d = (U ;//*)! if/,- G UnmarkedM(/*)

3. If I, lies below /* in A then

(MOO li is neither left nor right terminal w.r.t A
M01 li is right but not left terminal w.r.t A
MIO li is left but not right terminal w.r.t A
Mil li is both left and right terminal w.r.t A

Proof of proposition 5: This is by induction on |A(/*)|.

Base case: |A(/*)| = 1, in this case we know that /* is both left and right terminal in A.
Consequently RMM-(/*) = mkmark(l*,M11 ;/J,*) and 1, 2 and 3 clearly hold. Dba aase case

Induction step: |A(/*)| > 1. There are three cases to consider, we shall only do the
case when /* is neither left nor right terminal; the other two cases being somewhat simpler

§6 The Correctness of the Robson Marking algorithm. 31

versions of the same argument. So assuming that /* is neither left nor right terminal with
respect to A we have

HM(1.(J
,
) = RMBM,..(«:)W)

where p** = mkmark{l*,MOO ;p*) and /* = (/* ;p*)x for x € {a,d}.

Now /* ; p** satisfies |A(/£)| < |A(/*)| and using the fact that p = p* on A(/*) we have
putting

ft = EMr(i;)

that pa satisfies 1, 2, and 3 on Unmarked,^), by the induction hypothesis. And again
since |A(JJ)| < |A(Z*)| and the fact that A(i*) n A(^) = 0 we have that pa = p on A(/J) so
the induction hypothesis allows us to conclude that

satisfies 1, 2, and 3. A simple argument puts these together to show that p* satisfies 1, 2,
and3on{/*}©A(Z*)0A(^)

Opro posit Ion 5

A further useful fact is the following, the proof of which is a simple induction on |A(/*)|.

Commutativity lemma for RM^. (/*): If I* ;p* satisfies the hypothesis of the definition
of RMM. (I*) and T is a memory operation of the form Xp. setx(/*, u;p) where x € {m, a, d}
and lk & Unmarked^-(/*) then

r(RM(J.(r)) = RMr((1.)(r)

The fact that this transformation RM is indeed what is computed by rec.rmark is verified
by the following theorem, the proof of which we leave as an exercise since it is much simpler
than the one that follows it.

Theorem 5: If I ; p € Maexp and A is the left first spanning tree for Unmarked^) at
I ; p then

rec:rmark(l) ;p^> I ; RM^(i)

6.5. The Main marking theorem

Using the concepts defined above we can formulate the main theorem of this section
as follows.

Theorem 6: If I; p G Maexp and A is the left first spanning tree for Unmarked,^/) at
I;p then

rmark(l) ; p » /; RM,,(/)

Theorem 6 follows from the following lemma.

32 §6

Main Lemma: If /0 ; ßo € Maexp is such that

1. /0 € Unmarked^ (I)

2. no = n on Unmarked^0(/0)

3. No cell below l0 in the spanning tree A is marked in yu0

4. All cells above and to the left of /0 in A are marked in fi0 ■

then
markcar(l0,v) ;/i0 » popstack(l0,v) ;RMMo(/0)

Proof of the main lemma: This is by induction on |UnmarkedMo(/0)|.

Base case: |Unmarked^0(/0)| = 1. In this case both (/0 ; A*O)O and (/0 ; /z0)i are either
marked or atomic, by conditions 2. and 3. this means that lQ is both left and right terminal
w.r.t A. Now

markcar(l0,v) ; ß0 » markcdr(l0,v) ; fiX

where ßX = setm(l0,E10 ; mkmark(l0,EL ; ß0)) = mkmark(/0,E10 ; ß0) by cancellation,
furthermore

markcdr(l0,v) ; ßi ;» popstack(l0,v) ;/x2

where ß2 = *cim(/0,Mil ;//i) = mfcmarA:(/o,Mll ; ^0) = RM^0(/0), again by cancellation.
LJBase case

Induction step: Suppose that the lemma is true for memory objects of less rank than
lUnmarked^/o)! > *• We split this part of the proof into three cases. For convenience
we will let va and vd be (l0 ; ßo)0 and (/0 ; ß0)i respectively.

Case 1. $r(v0 -ßo) A -^$T(vd ; ß0)

Case 2. -.$T(u0 ;/z0) A &T(vd ;ß0)

Case 3. -.$r(^a 5Mo) A -H$r(vej ;A«O)

Case 1: In this case we know that l0 is left terminal. We also know that vd e L. So

markcar(l0,v) ; ß0 » markcdr(l0,v) ; ßi

where ßx = m&marA:(/o,E10;/io) now if vrf = Z0 then /Q is in fact both left and right terminal
and in this case

markcdr(l0,v) ; ßx » popstack(l0,v) ;ß2

where \x2 = setm(l0,Ull;ßi) = mkmark(/0,Mll;/i0) = RMMo(/0), by cancellation. Suppose
that vd # /o, which by the conditions of the lemma means that l0 is left but not right
terminal w.r.t A, then

markcdr(l0,v) ; ßi » markcar(vd,l0) \ßi

§6 The Correctness of the Robson Marking algorithm. 33

where /i2 = aetd(l0, v ; Mi)- It is a simple task to show that vd ; /z2 satisfies the conditions
of the lemma and that lUnmarked^,^)! < lUnmarked^ZoJI. By induction

markcar(vd,l0) \ M2 » popstack(vd,l0) 1 M3

where Ms = "BM^(vd). As /0 g Unmarked,,,(vd) we know that /0 is not altered in the
transition from M2 to M3. Thus

popstack(vd,l0) JM3 » popstack(l0,v) ; M4

where /i4 = «et(f(fo, vd ; setm(/0,MIO ; /i3)) By the commutativity lemma we have

setd(lQ,vd ; setm(l0,MIO ;RMw(v,i))) = RM„W(j0|U(l;,etm(io,HlO;f»a))(v,i)

where

seirf(/0,i>d ;setm(/0,M10;/i2)) = setd(lQ,vd ;setm(lo,mO;setd(lo,v ;mkmark(l0,E10;ßo))))

but by cancellation and absorption this is just mkmark(l0, M10;MO) and thus ß4 = RMW(I0).

□case 1

Case 2: In this case we know that /0 is right terminal w.r.t A. We have two possibilities
either va-l0Vva^l0. If va = /0 then /0 is both left and right terminal and

mar hear (l0,v) ; Mo > markcdr(l0,v) ; Mi

where Mi = mkmark (l0 ,E10 ;MO)- Since vd is either marked or atomic

markcdr(l0,v) ; ßi » pops£acfc(Zo,iO \ßi

where M2 = seim(/0,Mil ;MI) = mkmark{l0,Mil ;MO) = BM/nfo)'

If ua 7^ /o then
morjfccor(/0,v) ; Mo > marfccar(t;a,Jo) ; Mi

where Mi = 8eta(l0, v ; mÄmorA;(/0,EL ; Mo))- Now by the induction hypothesis

markcar(va,lo) ', Mi ^ popsiacfc(va,/o) ; M2

where M2 = E.MMl(fa). As l0 £ Unmarked^ (ud), its contents remains unchanged during
this transition, consequently

popstack(va,l0) \ßz » markcdr(l0,v) ; ß3

where ß3 = seia(Z0,vo ; setm(l0,ER ; M2))- Finally since ud is atomic or marked in ß0 and
consequently remains so in M3 we have

markcdr(l0,v) ; M3 » popstacA;(/o,v) ; ßi

34

where /z4 = aetm{l0,M01 ;M3)- NOW

/i4 = setm(l0,U01 ;seta(l0,va ; aetm(/0,ER ; RM^(t;a)))).

By the commutativity lemma we have /i4 = RMM-(va) where

fi* = setm(l0,M01 ; seto(/0,va ; se£m(Z0,ER ; seia(/0,v ; mfcmarJfc(/0,EL |Mo)))))

which by cancellation, commutativity and absorption reduces to mkmark(l0,M01 ;/z0) and
SO /i4 = RMw(/0). Dcase 2

Case 3: In this case neither va nor vd is atomic or marked, however there are several
possibilities (i) l0^va^vdjtlQi (ü) /0 = Va = Vd (iü) /0 ^ Va = Vd (jv) /0 = va ^ vd) and
(v) l0=vd^ va.

The last four cases all reduce to ones already considered so we leave them to the
suspicious reader to verify. In the first case we have

markcar(l0,v) ;/u0 2> markcar(va,l0) ; /^

where Hi = seta(/0,v ; m£mar&(/0, EL ; ß0)}. Now by the induction hypothesis we have

markcar(va,l0) ; Hi » popstack(va,l0) ; /x2

where /z2 = RM^^^). And as /0 £ Unmarked^ (u,*)

popsiacÄ: (?;<,,/0) ;//2 » marfccrfr(/0,u) ; ^3

where ß3 = seta(l0,va ; seim(/0,ER ;/i2))- Now, if ^ is marked in //3 then it must occur
below va in the spanning tree, in which case l0 is right but not left terminal. Given that vd
is marked in /u3 we have that

markcdr(l0,v) ;/x3 » popstack(l0,v) ;/z4

where /x4 = setm(l0,M01 ;//3) and, just as in case 2, /i4 = RMMo(/0). So suppose that vd is
not marked in /z3. In other words suppose that /0 is neither left nor right terminal. Then

markcdr(l0,v) ; p3 2> markcar(vd,l0) ', ß4

where (i4 = setrf(/0,v;/i3). Consequently using the induction hypothesis again we have that

markcar(vd,lo) ; A*4 » popstack(vd,l0); //5

where /J5 = KM^vj). As /0 is not altered in the transition from p4 to p5 we have

popstack(vd,l0) ;n5 » popsfacA(/0,v) ; ße

§7 The Correctness of the Robson copy algorithm. 35

where fi6 = setd(l0,vd ; setm(l0,MOO ;/x5)). Now

H4 = setd(l0,v ; seta(l0,va ; setm(l0,EB. ;RMW(^))))

and
^6 = setd(l0,vd ; setm{l0,MOO jRM^v,*)))

so by the commutativity lemma

^6 = RM,et(i(j0it;<j;,etm(i0,Moo;^))(<■><*) = RMtt+(vd)

where

H+ = setd(l0,vd ; seim(/0,MOO ; setd{lQ,v ;seta(l0,va ; setm(l0,ER ; RMMl(va))))))•

Using the commutativity lemma again this becomes

p+ — RM«etd(I0.«i;*etm(J0 ,M00;»et<i(J0 ,t);«eto(l0 ,u„;«etm(J0 ,ER;«eto(Jo,«;mfcmorfc(Jo,EL;>io))))))) \.va)

which by cancellation, commutativity and absorption is just RMmjfemarfc(j0 .MOO^ojC^o) Thus

/i6 =RMMo(/0). ücase 8

drnain lemma

7. The Correctness of the Robson copy algorithm.

In this section we prove the correctness of the Robson copying algorithm. The section
is structurally similar to the previous one. In 7.1 we define a simple recursive program,
which describes the same function as the Robson copying algorithm, its pointer reversal
counterpart. In 7.2 we introduce some notation and define the set upon which we shall
perform induction. Then in 7.3 we introduce the transformation by which we prove the
equivalence of our two copying programs. In 7.4 we introduce the actual Robson algorithm
and finally in 7.5 we prove its correctness.

7.1. The Recursive version of the copy algorithm.

The following program is a recursive version of the Robson algorithm and we shall
study it in this section as a preliminary to the actual Robson copy algorithm. It simply
implements the transformation Peel, which will be defined shortly. We begin by a discussing
how the program works. As Robson himself says of his own algorithm:

A new algorithm is presented which copies cyclic list structures using bounded
workspace and linear time The distinctive feature of this algorithm is a
technique for traversing the structure twice, using the same spanning tree in each
case, first from left to right and then from right to left.

36 §7

Our simple recursive version uses much the same technique, the only difference is that since
our version is not tail recursive we cannot claim to use only bounded workspace. With
respect to the traversals at least we have made our job somewhat easier. The first traversal
of the structure corresponds precisely to the algorithm that we have called the Robson
marking algorithm. Consequently we need now only describe the second traversal, best
described as a peeling operation.

Recall that after the first traversal each cell is allocated a new cell, which we shall
call its image. The original cell is modified so that its car part contains a mark denoting
its place in the left-first spanning tree, while its cdr part contains its image. The image
in turn contains the cells original contents. Consequently each original cell now contains
two more pieces of information, namely whether its car or cdr is terminal in the Brouwer-
Kleene ordering of the left-first spanning tree. This information allows the second traversal
to use the same spanning tree, in the reverse order, without further marking. The crucial
observation is that since the decision to follow a pointer depends on the mark in the cell
containing it, rather than upon the cell pointed to, this traversal can remove the marks as
it uses them. Furthermore since the image cell which is used together with the original cell
to store the mark and the original contents, is no longer required, this cell can be recycled
and used as the corresponding cell in the copy. This storage optimization is similar in spirit
to that done recently in the study of tail recursion up to a cons, see for example [W].

rec:copy(l) <—

il(atom(l),

1,
[rmark(l),let{tl -«- cdr(l)}[rec:peel(l),tl]])

rec:peel(oldcel) *—

let{newcel -<- crfr(oldcel)}

let { ne wc ar ■+image (car (newc el)),

newcdr -<- image(cdr(nevicel)),

oldcar -<- car (newc el),

oldcdr ■*- cdr(newcel)}

[ils(e?(MOO,m(oldcel)),[rec:pce/(oldcdr),rcc:pee/(oldcar)],
eg(M01,m(oldcel)),rec:pee/(oldcar),

eg(M10,m(oldcel)),rec:peei(oldcdr),

eg(Mll,m(oldcel)),NIL),

rp/aea(oldcel, oldcar),

rp/ocrf(oldcel,oldcdr),

rp/aca(newcel,newcar),

rp/acrf (newcel, newcdr)]

image(l) «- if (atom(l),l, cdr(l))

§7 The Correctness of the Robson copy algorithm. 37

We now set about developing some concepts that enable us to prove the correctness of this
as well as of the Robson algorithm.

7.2. Some additional concepts and notation.

In this section we abide by the following important notational assumptions. They cor-
respond to the following scenario: we begin with a memory object l0 ;/i0 with CellsMo(Z0) =
{l0,...,lr} such that none of these cells are marked. Thus

UnmarkedMo(/0) = CellsMo(/0)-

For convenience we let the car of k ;MO be v<0 and the cdr be v^, in other words (/,• ;MO)O = ^0

and (/,•] Ho)i = vid. We then apply the Robson marking algorithm to l0 ; MO and so obtain
IQ ; fi where

rmark(lo); Mo » /o ; M = *o ; RMw('o)'

Each cell k for i G r + 1 is allocated a new cell, which we call its image. We denote the
image of the cell k € Cells^0(Z0) by ZJm. Since we shall make use of these assumptions over
and over again we save time and give them a name

0. IQ ; no E M«eip is such that no cell in Cells^0(/0) is marked.
1. A is the left first spanning tree of UnmarkedMo (Z0) at l0 ; MO-

A^ 2. /Z = RM£O(Z0).

3. CeUslio{lo) = {lo, h, ••■M
k 4. {k ; Mo)o = na and (U ; MO)I = v%d for ier + l.

The following proposition is a consequence of our notation.

Proposition 6: 6^ = 6^ U {l0
m, l\m, ...,/*m} where

1. Jj» ^ /«» g 6„0 for i,j er+1 and i # j

2. image(li) ;/i»l|m;/i for ier+l

3. car(li); \i » v ; M where v € {MOO, M01, M10, Mil} for ier+l

4. (U ; Mo)o = (h ; M)» = via and (/< ; Mo)i = & ; M)<* = «w for i € r + 1.

For convenience we let

{v if v € A
v if vGL but v£{l0, ...,/r}
/»>*• if v = /< A t € r + 1

The main theorem concerning the recursive algorithm is:

Theorem 7: If /o, Mo, and M are as in A then

rec:copy(l0); /i0 » % ! Mi

38 §7

such that

1. # ; m S /0 ; fii

1. /ii(/<) = ßo(li) for j'Gr + 1

1- 01 (C) = [(v,a)*ma'e (t^)*™*8] for ier + 1

We now turn to defining the set upon which induction will be carried out. In this case since
the structures that we are working on have a special form, car-cdr chains through cells
having a certain property are no longer appropriate. What we actually are interested in
now is a-d chains in the sense of the abstract syntax of the previous section. For this reason
we define TC{0id} in exactly the same way as TC except that 0 is replaced everywhere by
a and 1 by d. To be precise:

Definition: TC{0i<i} (v ; /x, *, $a, $d) is the smallest set X such that

1. If ¥(v ; //) then veX

2. If / € X and $a(/; fi) then (/; p)a € X

3. If / e X and $d(/; ß) then (/; n)d € X

The reader is reminded that the definition of (/; fi)a and (I; p)d can be found in 6.1.

Definition of Tree^v): Suppose that /xt is some memory, it will usually be related to
H but we do not require it, then define

Tree^(t/) = TC{aid}{v,»t,$M,$a,$d)

where $a(u ; fi) <- (v ; ß)m e {MOO, MOl}, $d(v ; fi) «-> (v ; M)m e {MOO, MIO}, and
*M(« ; AO <-► marfced(v) ; /z » T ; /u. In other words

'0 VGA V -$M(u;Mt)
M if(v;Mt)m = Mll

Tree^, (v) = {v}u TreeM< (va) if (v ; Mt)m = MOl
{v} U Tree^ (vd) if (v ; ^)m = MIO

I {v} U Tree,,, (va) © Tree^(t/d) if (v ; ^)m = MOO

Notice that Tree^) = A(/,) when k e Unmarked^ (fo), for ier+1.

Definition of Tree* ,,(/*): Now if /x is as in A and i € r + 1 then for convenience we let

Tree*„fc) = Tree^) © {l™ | /,- e Tree^/,)}

The Correctness of the Robson copy algorithm. 39

7.3. The recursive transformation peel.

We now define the transformation that we use to prove the theorems about peeling.
As in the previous section we begin by making explicit the assumptions under which we
make this definition. We give them a name so as to refer to them in the future.

Peel condition: Suppose I, ;m € Maexp is such that s e r+1 and pt = p on Tree*M(/a).
Furthermore if k < la with respect to A then {k\Ht)i = ^m-

Definition of Peel^t(/a): We now define Peel^t(/a) a transformation from M,exp to
M,exp. Put

H** = setcdr{la,vad ; setcar(la,vaa ; /zt))

and

then

Had = Setcdr(l,m,(vad)
ima3e ; setcar(le

m,(vaa)
ima!" ; /*"))

Peel/it(/8)= -

' Peelp..!^^.^(v,a) if {I,]fit)m= MOO

Peel„.*(v.«) if (/,; ßt)m = M01
Peeled(vad) if (la ; Mt)m = MIO

\,nad if(/.;A*t)m=Mii

Theorem 7. now follows from the following two lemmas.

Rectpeel Lemma: If la ; pt satisfies the Peel condition then

rec:peel(la); ßt » la
m ; Peel^(/a)

Proof of Recipeel lemma: This is a simple induction on |TreeMt(/,)|.

DRec:peel lemma

Peel Lemma: If la ; /it satisfies the Peel condition and if U € Tree^t(/a) then

1. PeelM<(Za) = no on TreeM,(/a)

2. Peel^.)^) = [(^a)ima3e {vidYma"], and

3. Teel„t{la) = fjt off Tree^ (Za).

Proof of Peel lemma: This is by induction on {Tree^^e,)].

Base case: |TreeM<(/a)| = 1, in this case (la ; fit)m = Mil and so by proposition 5 la is
left and right terminal w.r.t A. Now pt = n = RM£0(Z0) on Tree;(/a) = Tree^M/*"1}
so by proposition 6

Ht{l.) = [Mll,/*m] and iit{la
m) = [vea,vad\.

Then Peel^ (/8) = fiad where nad is as in the definition of Peel. Clearly pad has the desired
properties. Dbase case

40

Induction step: Suppose |Tree^(/a)| > 1, and the lemma holds for simpler cases. We
shall do the case when Ht{la) = [M00,/'m], the other two cases being somewhat simpler. In
this case we have

PeelMt(/a) = PeelP-.,^(w#4)(v,0)

where again nad is as in the definition of Peel. Now observe that we may apply the induction
hypothesis to vsd. Thus by letting /i* = Peel^.j^) we have

/z* = no , on Tree^v,«*) = Tree^(ved)

and

M*(r) = [('.a)imase,(/.<i)*moffe] for (,efieeftM.
Now again vaa ;//* satisfies the hypothesis of the lemma and Tree^v,,,) = Tree^.fv,,,) is
smaller than Tree^,(/8) so letting ßf = Peel^-(vao) we have by the induction hypothesis
that

Pf = Po on Tree^fv.o)

and

»Ar) = [(liaY
ma3e,(liä)iman for ^eTree^).

Using the definition of pad and the fact that

Tree^(I.) = {/„}© Tree^(«,„) e TreeM,(v.d)

we can easily combine the above to give the result. Dpcei iemma

We finish this section with another important property of PeelMt (la), which is proved
by an easy induction on |TreeMl(/8)|.

Commutativity Lemma for PeelMt(/8): ttl,\pt satisfies the Peel condition and T is
a memory operation of the form \p.setx{lk,v \n) where x E {car,cdr,a,d} and lk G <5„0 but
lk & TreeM(/8) then

r(Peel^(/8)) = Peelr(Mt)(/8)

7.4. The Robson Copying Algorithm

We now present the actual Robson copying algorithm, copy. This uses peel, a pointer
reversing version of our recipeel algorithm.

copy(s) *- if (aiom(s),s,pee/(rmar*(s), ALPHA))

The Correctness of the Robson copy algorithm. 41

pee/(s, stack) +—

let{nc -*- cdr(s),tl -«- a(s),t2 -«- d(s)}

if s(eg-(MOO, m(s)), [setm(s,FOO),

8etd(s, stack),

pee/(t2,s)],

eg(M01,m(s)),[se£m(s, stack),

se£a(s,t2),

se£rf(s,image(t2)),

pee/(tl,s)],

eq(mO, m(s)), [se£m(s,F10),

seid(s, stack),

pee/(t2,s)],

eg(Mll,m(s)),[sefm(s,tl),

se£a(s,tma</e(tl)),

seitf(s,tmo(7e(t2)),

rp/ocrf(s,t2),

popstack2(s, stack, nc)])

popstack2(s,stack,newcel) <—

if (eg(stack, ALPHA),

newcel,

let{nc -<- crfr(stack),oc -<- cor(stack),tl -<- a(stack),t2 -*- rf(stack)}

if s(eg(FOO, m(stack)), [se£m(stack,t2),

se£d(stack,newcel),

seto(stack,s),

pee/(tl,stack)],

eg(F10,m (stack)), [se£m(stack,tl),

se£a(stack, image (t 1)),

setd (stack, newcel),

rp/ocd(stack,s),

popstack (stack, t2,nc)],

T, [rp/ocrf(stack,tl),

setm(nc, newcel),

seim(stack,s),

popstack2 (stack, oc,nc)])

42

The algorithm above uses the abstract syntax defined in 6.1, which for ease of reading, we
repeat here.

m(l) «— car (l)

o(l)<- car(cdr(l))

d(l) «- cdr{cdr{l))

setm(l,m) *— rp/aca (l,m)

seta(l,x) *— rplaca(cdr(i),x)

aetd(l,x) <— rplacd(cdr(l),x)

image(l) <— ii(atom(l),l,cdr(l))

Where x accesses the cxr part of the image cell associated with I and setx updates it for
x € {a,d}. As for the Robson marking algorithm peel is defined by a tail recursive system
of definitions.

7.5. The Main copying theorem.

The main theorem of this section is

Theorem 8: If l0, fi0 and p are eis in A then

copy{lo); no » l0
m ; Mi

such that

1. t^im Silo;m

2. HI{h) = ßo{h) forier+1

3. mß*") = [(via)
ima" {vid)

ima9°] = [vj™ vfr] iorier+1
df

This is a consequence of the following lemma.

Main Lemma: If le ; ßt satisfies the Peel condition then

peel(l„ v) ;nt » popstack2 (I., v, /*m) jPeel^ (/,)

Proof of Main lemma: This is by induction on |Tree^t(/s)|.

Base case: |TreeMt(/a)| = 1. In this case (ls ; fit)m = Mil and consequently

peel(lg, v) ; p,t » popstack2(la, v, /*m) ; //*

§7 The Correctness of the Robson copy algorithm. 43

where, recalling the definition of p** and nad from the previous section, we have

fi=<

(//** if vea,vsd € A
setcaril*™, v™ ; /i") if ved € A A vaa € L
sefcir (ls

m, v'21 ; M**) if vso € A A «.4 G L
Had otherwise

By the definition of (v)ima3e, in all of the above cases /i* = fiad. Dbase case

Induction step: |Tree^(/8)| > 1. In this case {la;,fh)m e {MOO, M01, MIO}. Conse-
quently we split this part of the proof into three cases.

Case 1: (le ;pt)m.= MOO. Here we have

peel(l„,v) ; pt » peel(vad,le) ; pi

where Hi = setd(la,v ; setcar(ls,F00 ;//t)). Consequently by the induction hypothesis

peel(vsd, /8);MI » popstack2(vad, le, <™);M2

where \i<i — Peelf*i(v«<i)- Now since /a is unchanged during the transformation from ^1 to
ß2 we have

popstack2(vad, la, vx
a™) !M2 » peel(vaa,la) ; //3

where ^3 = seia(/a,i;a<j; setrf(/8,v*y ; setcar(la,v ; M2))). Again by our induction hypothesis

peel(vaa, la) ;/i3 » jpopsfac&2(uao, /„, v,™) ;/x4

where /x4 = Peel/is(vao). Since la is unchanged we obtain

popstack2(vaa, lB, v1™) ; pA » popstack2(ls,v,la
m) ;/i5

where fi5 = aetcdr(la,vad;setcar(lB
m ,v\r^\setcar{la,vsa]ßA))). Nowweshow/u5 = Peel^ (/,).

Note that /z2 = Peel^i^) and /zi = setd(le,v ;setcar(Ie,FOO;pt)). By the commutativity
lemma fi2 = setd(l8,v ; se£car(/a,F00 ; PeelMt (vsd))) and thus

/x3 = seta(ls,vad ; se£t/(Za,ua™ ; setcar(la,v ; setd(la,v ; seicar(/a,F00 ; PeelMt(?;a<i))))))

which by cancellation this becomes

H3 = aeta(/a,uad ; se*<f(/a,v*™ ; sctcar(/a,t; ;PeelMt(vad)))).

Now
A*s == sefcrfr(/a,va(i ; se£car(/a

m,i;a™ ; setcar{la,vaa ; PeelMs(uaa))))

which by the commutativity lemma becomes

Pee^etc<ir(^,«.j;»etcar(^,m,«t,™;»etCar(^,«.a;«eta(^,«.d;«et<i(^,t;*y;*eteor(^>t(;PeelM4(u.i))))))))(V8<»)-

44

By cancellation, this becomes

US =^ee^ietcdT(l.,v.d;,etcar(l'^,v^l,etd{l,,v<
ii2;<>etcar(l.,v-,Peellii(v.d)))))(

vaa)

and one more application of the commutativity lemma gives the result. Dcase 1

Case 2: (le ;pt)m = M01. In this situation

peel(l„v) ;m » peel(vaa,le) ;ßX

where
_ (seta(la,vad ;setcar(lg,v ; m)) if vad € A

\ setd{ls,v
xJ2 ; seta(le,vad ; setcar(la,v ; /it))) otherwise.

Now by induction

peel(vaa, le)\ßi » popstack2(vsa, /,, f^);^2

where ^2 = PeelMl(uao). Since /a is unchanged

popstack2(vBa, l„ va™);/j,2 » popsfacÄ:2(/a, v,/*m) ;/u3

where /i3 = seicar(/s,uaa ; se*car(/4
m,i;;;2' ; setd{la,vad ; /i2))).

We only show that p3 = PeelMt(/a) in the case vad € A, the other case is not much
more challenging.

/i3 = setcar{la,vaa ; setcar(lg
m,v£ ; setd{la,vad ;PeelMl(vso))))

So by the commutativity lemma

ß3 = Peel4etcar(j#)U.a;4etcar(Ii'»>v;™;»eW(/.,U.(i;^1)))(v«o)

and since
ßi = seta(la,vad ; seicar(/a,v ; ^t))

we have

^3 = Peel«et<;ar(J.1t;.0;«etCar(i«,™,u*,™;»etd(i.,t).<f;*eto(l.,tj,<i;»etCar(i,,u;^)))))(v8o)-

By cancellation this becomes

/i3 = Peel«tcar(/,1u.a;»etcar(Ii™,u;™;«etd(J.,u.i;Ait)))(v«o)

and thus /u3 = PeelM,(/a). DcasG 2

Case 3: (/s ; /ut)m = MIO. In this situation

peel(l8,v) ;nt » peel(vad,l8) ;/zx

§8 Bibliography: 45

where Hi = 8etd(la,v ;aetcar(la,F10 ;/zt)). By induction

peel(vsd, L) ;A*i » popstack2(v8d, /„, v™) ; fi2

where /z2 = Peelfil(v8d). Furthermore

popstack2{vad, h, v™) \H2 » popstack2(l8,v,lta
m) ; p3

where

_ f setcdr(l8,vad ; se£d(/8,u*7 ; se«car(/8,t>8a ; //2))) if u«a e A
M3 \ seia(/8,v*™ ; setcdr{l8,ved ; se£rf(/8,u*7 ; setcar(/8,u8a ; /z2)))) otherwise.

Again we only show /z3 = PeelMt(/8) in the case vad € A. Here we have

ji3 = setcdr(la,vad ; seirf(Z8,v*™ ; setcar(la,vaa ; /i2))).

Using the commutativity lemma and cancelling we obtain

M3 = Peel<etcdr(J.,«.<i;»et(i(J.,«^;»etcar(l.,u.a;^)))(t,«<i)-

Dcase S

I-Jmain lemma

8. Bibliography:

. A ... Aho, A. V., Hopcroft, J. E., Ullman, J. D. The Design and Analysis of Computer
Algorithms. Addison-Wesley 1974.

« B ... Burstall, R. M.: Some Techniques for Proving Correctness of Programs which
Alter Data Structures, in Meltzer, B. and Mitchie, D. (eds.) Machine Intelligence 7,
Edinburgh University Press, (1972), pp. 23-50.

■ C ... Steele, G. L.: Common Lisp Digital Press, 1984, page 265.
. D ... Deutsch, L. P.: p 417, Volume 1, [K].
• F ... Friedman, H.: Algorithmic procedures, generalized Turing algorithms, and ele-

mentary recursion theory. Logic Colloquium '69, North Holland 1971, pp 316-389.
■ K ... Knuth, D. E.: The art of computer programming. Addison-Wesley, 1968.
• Mc ... McCarthy, J.: Towards a mathematical science of computation. Information

Processing 1962, Proceedings of IFIP Congress 62. pages 21-28.
■ Mo... Moschovakis, Y. N.: Abstract First Order Computability I. Trans. Amer. Math.

Soc. 138, 1969, Pages 427-464.
■ R... Robson, J. M.: A Bounded Storage Algorithm for Copying Cyclic Structures.

Communications of the ACM, June 1977, Volume 20, Number 6, Pages 431-433.

46 §8

■ S ... Suzuki, N.: Analysis of pointer rotation. Communications of the ACM, May 1982,
Volume 25, Number 5, Pages 330-335.

■ SW... Schorr, H., and W. M. Waite: An efficient machine-independent procedure
for garbage collection in various list structures. Communications of the ACM, 1967,
Volume 10, Pages 501-506.

■ T ... Topor, R. W.: The Correctness of the Shorr-Waite List Marking Algorithm. Acta
Informatica, 1979, Volume 11, Pages 211-221.

• To... Touretzky, D. S.: LISP: a gentle introduction to symbolic computation. Harper
and Row 1984.

« Tu... Tucker, J. V., et al.: Finite Algorithmic Procedures and Inductive Definability.
Math Scand. 46. 1980. Pages 62-76.

■ W ... Wadler, P.: Listlessness is Better than Lazyness. 1984 ACM Symposium on Lisp
and Functional Programming, Pages 45-53.

