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Chapter 1

Introduction

In this work we shall present some aspects of the semantics of destructive Lisp,
as a case study in reasoning about programs which destructively manipulate data.
By destructive Lisp we do not mean simply pure Lisp but one that fully takes into
account the subtleties and advantages of the traditional implementation of the
underlying data structure, the so-called S-expression domain (S-expression is an
abbreviation of Symbolic expression). Thus we are not interested in nice logical
approximations but rather with reconciling both theory and practice. More to
the point, we aim to improve practice via theory. Unlike its rivals the theory
neatly separates control from data and provides a framework for many areas of
research. The following are just a few examples of the areas — which are quite
well developed in the pure case — in which we wish to obtain results.

• Program specification.

. Program derivation, from such specifications.

• Program verification, proving programs meet certain specifications.

• Program transformations, both compiling and optimization.

• Analysis of properties of algorithms, both intensional and extensional.

This work constitutes some of our efforts in these areas. In both this work
and the theory it describes we have tried to emphasize the interplay between these
areas, particularly the first four. Indeed one of the aims of this book is to replace
the old paradigm

Verification = Hand Simulation + Induction,

which is implicitly and explicitly dominant in the existing literature, by one which
is closer to the aims and spirit of inferential programming. Namely

Verification = Transformation + Induction.

Inferential programming was introduced in (Scherlis and Scott, 1983) and
emphasizes the role of derivation in programming practice. To be explicit:

Our basic premise is that the ability to construct and modify programs will
not improve without a new and comprehensive look at the entire program-
ming process. Past theoretical research, say, in the logics of programs, has
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tended to focus on methods for reasoning about individual programs; lit-
tle has been done, it seems to us, to develop a sound understanding of
the process of programming — the process by which programs evolve in
concept and in practice. At present, we lack the means to describe the
techniques of program construction and improvement in ways that prop-
erly link verification, documentation and adaptability.

The attitude that takes these factors and their dynamics into account
we propose to call inferential programming.

Before we proceed further in our discussion of inferential programming and
this new paradigm we point out two other connections between these areas. Firstly,
on a naive level, verification of programs and derivation of programs can be viewed
as duals of one another. In verification one proves that a given program meets or
satisfies a certain specification. In derivation one does the reverse — from specifi-
cations one derives programs which accomplish the task. When such specifications
are just simple-minded or well known programs that perform the required calcu-
lation or construction the connection between derivation and verification is most
apparent. Program transformation is thus seen to be the vehicle of both activities.
The process of derivation or verification consists in a sequence of program trans-
formations which, presumably, preserve the appropriate extensional or intensional
properties of the programs involved. This analogy, justifiably, places verification
in a more favorable light than that which some have cast upon it. Its defect is that
it ignores the fact that derivation, on the face of it, is a substantially more diffi-
cult task. In verification the programs are predetermined while in derivation not
only axe they evolving, but also the direction in which they are evolving changes.
Also in verification one can work with an equivalence relation but in derivation
the relation cannot be symmetric, rather one must take some notion of computa-
tional progress into account. We regard verification as an integral part of program
derivation and feel there is little future in verification, viewed as the historical
task of formally verifying well known existing programs. Verification is used in
this paper as a testing ground for a formal framework of program derivation and
transformation.

Secondly, often the verification of one program will increase the program-
mer's understanding to such an extent that they can write related programs that
are more efficient. A good example, when the programmer is a machine, can be
seen in (Goad, 1980), where the task of specializing an algorithm is accomplished
by specializing and pruning the correctness proof of the initial algorithm. The
resulting algorithm is often an order of magnitude more efficient than the one
obtained by directly specializing and pruning the algorithm itself. Here the trans-
formational approach has obvious advantages over the hand simulation approach.
This is because it is at a more abstract level, and hence reveals more structure in



both the algorithm and the transformations used. In the hand simulation approach
it is often hard to see the forest for the trees.

Program verification, we hope, will eventually disappear as a discipline sepa-
rate from program derivation. The process of deriving a program from an abstract
specification will also serve as a verification of the derived program. It will share all
the properties of the specification that the intermediate transformations preserved.
Thus verification is incorporated into the study of derivation and transformation,
and the study of transformations is central to both activities. This theme is de-
veloped further in (Scherlis and Scott, 1983) where the authors say:

The traditional correctness proof — that a program is consistent with its
specifications — does not constitute a derivation of the program. Conven-
tional proofs, as currently presented in the literature, do little to justify
the structure of the program being proved, and they do even less to aid in
the development of new programs that may be similar to the program that
was proved. That is, they neither explicate existing programs nor aid in
their modification and adaptation.

We intend that program derivations serve as conceptual or idealized
histories of the development of programs. That is, a program derivation
can be considered an idealized record of the sequence of design decisions
that led to a particular realization of a specification

And in their conclusions the authors say:

Stripped down to essentials, our claim is that the programs of the future
will in fact be descriptions of program derivations. Documentation meth-
ods based on stepwise-refinement methodologies are already strong evi-
dence that there is movement toward this approach. These documentation
methods also provide support for the hypothesis that program derivations
offer a more intuitive and revealing way of explaining programs than do
conventional proofs of correctness. The proofs may succeed in convincing
the reader of the correctness of an algorithm without giving him any hint
of why the algorithm works or how it came about. On the other hand, a
derivation may be thought of as an especially well-structured constructive
proof of correctness of the algorithm, taking the reader step by step from
an initial abstract algorithm he accepts as meeting the specifications of
the problem to a highly connected and efficient implementation of it.

One virtue of our new paradigm is that it emphasizes the role of transforma-
tion rather than the low-level hand simulation approach. Transformations devel-
oped and studied in the process of verification are equally applicable in the more
productive process of derivation. The style is also more amenable to automation
than the hand simulation variety. The dominance of the hand simulation school is
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largely a consequence of their preoccupation with extensional relations. To retain
a transformational approach in the transition from purely applicative languages
to those with side effects one must also make the transition from extensional to
intensional equivalence relations. Thus we claim that the limitations of the hand
simulation school rests upon their mistaken emphasis on extensionality.

1.1. A Little History

We have chosen to work in a Lisp-like world for many reasons. The most
immediate is that it allows us to contrast our destructive version with the purely
applicative fragment, pure Lisp, and the issues that arise in an enriched environ-
ment. More importantly, however, is that we shall, wherever possible, use pure
Lisp as our specification language. Lisp is the second oldest programming lan-
guage still in active use today, being slightly younger than Fortran. Its father,
John McCarthy, began work on the first implementation of Lisp at the newly
founded (by McCarthy and Minsky) MIT Artificial Intelligence Project in the fall
of 1958. Although work on Lisp, or at least the ideas from which it arose date
back as early as 1955. The first implementation was on the IBM 704 computer and
accounts for the names of the Lisp primitives. For example we have the Contents
of the Address part of the Register, the Contents of the Decrement part of the
Register, RePLace the Contents of the Address and RePLace the Contents of
the Decrement. It has been suggested that the only reason such odd names have
survived is the ability to pronounce compositions of them, such as cdadr, cddr
and cadr. Interesting discussions of the early history can be found in (McCarthy,
1978) and (Stoyan, 1984). McCarthy, in (McCarthy, 1980), describes the features
of Lisp which in his mind characterize it as a programming language:

1. Computing with symbolic expressions rather than numbers.

2. Representation of symbolic expressions and other information by list structure
in computer memory.

3. Representation of information on paper, from keyboards and in other external
media mostly by multi-level lists and sometimes by S-expressions. It has been
important that any kind of data can be represented by a single general type.

4. A small set of selector and constructor operations expressed as functions, i.e.
car, cdr, and cons.

5. Composition of functions as a tool for forming more complex functions.

6. The use of conditional expressions for getting branching into function defini-
tions.
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7. The recursive use of conditional expressions as a sufficient tool for building
computable functions,

8. The use of A -express io ns for naming functions.

9. The storage of information on the property lists of atoms.

10. The representation of Lisp programs as Lisp data that can be manipulated by
object programs. This has prevented the separation between system program-
mers and application programmers. Everyone can improve his Lisp, and many
of these improvements have developed into improvements to the language.

11. The conditional expression interpretation of the Boolean connectives.

12. The Lisp function eval that serves both as a formal definition of the language
and as an interpreter.

13. Garbage collection as the means of erasure.

14. Minimal requirements for declarations so that Lisp statements can be executed
in an on-line environment without preliminaries.

15. Lisp statements as a command language in an online environment.

1.2. The Underlying Data Structure

Let us begin by describing the underlying data structure of pure Lisp and
comparing this with that of destructive Lisp. The underlying data structure of
pure Lisp, §„,/, is easily describable and appears in many guises other than its
traditional one, for example in (Moschovakis, 1969) the author developed inde-
pendently a notion of prime computability over an arbitrary algebraic structure.
His system is strikingly similar to conventional pure Lisp, both in spirit and style,
thus providing evidence for the fundamental nature of Lisp. The underlying data
structure in pure Lisp is simply obtained from the set of atoms, A , by closing it
under a pairing operation. Thus the celebrated isomorphism:

§„,/ S A U (§„,/ X §„,/).

In pure Lisp the functions car and cdr are simply the first and second projection
functions on pairs and are undefined on atoms, cons is the pairing function, equal
determines whether two atoms or pairs are identical, i.e. whether or not their cars
and cdrs are equal while atom tells us whether the object in question is either an
atom or a pair. Thus the underlying data structure of pure Lisp can be thought
of as a traditional first order structure:

< §«>/, cons, car, cdr, atom, equal,T, NIL > .
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It is thus a static object, in the sense that the nature of an object does not change in
time. The data structure has other nice properties. For example the theory of this
structure has been shown to be decidable (Tenney, 1972), (McKinsey and Tarski,
1946). Also in (Oppen, 1978) it is shown that the quantifier free part of this theory
is decidable in linear time. Another important property of the data structure is
that it is built up inductively, thus allowing strong principles of induction to be
used in verifying programs. One last important principle is that Leibniz's law
holds for programs; equal expressions can be replaced by equal expressions in an
expression to obtain an equal expression:

Leibniz's Law GQ(X) = e\(x) —> e(x,eo(x)) = e(x,ei(x)).

This principle has the consequence that correctness proofs in pure Lisp are
very much of the transformation plus induction variety. The content of Leibniz's
principle is that it lays the foundation for a calculus of program transformations.
Any program that is obtained from another by replacing a portion by another Lisp
equal one is guaranteed to have all the extensional properties the original had. It
also allows equational verification and derivation. The underlying semantics can
be pushed somewhat into the background, serving merely as a justification for the
transformations and induction principles involved.

This is not to say that pure Lisp does not have its disadvantages. The most
glaring, perhaps, is the fact that it is theoretical rather than practical. It could also
be argued that the simplicity of the data structure and the resulting computation
theory has, perhaps, helped perpetuate the myth that there is one single notion of
equivalence between programs, which is by and large an extensional notion, and
as a consequence one single notion of equivalence preserving transformations. It
also gives unjustified emphasis to extensional properties of programs, since the in-
tensional relations can easily be transformed into extensional properties of related
(or derived) programs (Talcott, 1985b). This relationship between extensional and
intensional properties of programs is certainly not true in the destructive case.

In destructive Lisp we have almost exactly the opposite situation. The lan-
guage is actual, efficient, but until now did not have an elegant or even nice theory
surrounding it. In destructive Lisp the data domain is similar to that of pure
Lisp but more complex. It consists of two types of objects, atoms and cons cells.
Atoms are either numbers or symbols, with two special symbols T and NIL playing
the role of booleans, T for true and NIL for false. In this book we shall usually
ignore any structure A might have, other than containing the integers, and shall
concentrate on the other type of object, cons cells. A cons cell is essentially an or-
dered pair of names or addresses of other S-expressions. These addresses or names
are usually called pointers, the first one is called the car pointer and the second
the cdr pointer. This indirect reference allows for non well-founded or cyclic S-
expressions, an aspect of this data structure that is becoming more and more in
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cor —address. cdr —address

Figure 1. A Cons Cell

vogue. Cons cells are traditionally represented by boxes and pointers diagrams in
the manner shown in figure 1.

The basic underlying data operations

atom, int, addl , subl , eq, cons, car, cdr, rplaca, rplacd,

are easily describable with this picture in mind, atom is the characteristic function,
using the booleans T and NIL, of the atoms, eq just tests whether two data objects,
either cons cells or atoms, are literally identical, cons takes two arguments and
creates a new cons cell which contains pointers to the arguments, in the order
given, car and cdr just return the object pointed two by the first and second
pointers in a cons cell, they are not defined on atoms. The operations rplaca and
rplacd destructively alter an already existing cons cell in the following fashion:
given two arguments, the first of which must be a cons cell, rplaca will alter the
contents of the first argument so that its car pointer now points to the second
argument, rplacd similarly alters the cdr pointer. Notice that the use of rplaca
and rplacd allow one to construct cons cells which point back to themselves. They
also actually change the nature of existing objects. Thus these operations force
us from a static model to a dynamic one, the S-expression memory structure. In
the next chapter we introduce the general notion of a memory structure, the S-
expression memory structure being just a particular example. One of the problems
in developing a theory for destructive Lisp is the failure of Leibniz's Law. A simple
example of this is

co7w(«m,s(T,T), co7ws(T,T)) = c<ms(T,T)} cons(x,x).

When we apply Leibniz's law with e(y) = rplaca(car(y), NIL) we obtain the obvi-
ously false conclusion:

c<nw(«ms(NIL,T), co7w(T,T)) = letjx -<- co?w(NIL,T)} cons(x,x).

Thus simple syntactic manipulations, on the face of it, seem prohibited in the
destructive case. This does much to explain why the vast majority of verification
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proofs of destructive programs in the literature are of the hand simulation variety.
Thus a first step in justifying our paradigm is to recover Leibniz's Law. This is
done by making the transition from extensional relations to intensional ones.

Another problem is that the operations rplaca and rplacd do not depend solely
on the pointwise isomorphism type of their arguments. Even though XQ and x\ may
be isomorphic objects we cannot conclude that rplaca(zo,y) and rplaca(xi, y) will
return isomorphic objects. These operations not only depend on the isomorphism
type of their arguments but also on how they sit together, for example if they
share structure or not. Structure sharing between objects, detectable using eq,
and cyclic or non-well-founded structures make the underlying data structure in
this version of Lisp substantially more complex than in the pure case. The nature
of the operations prohibit viewing the data structure, in any natural way (an
example of an unnatural way would be to incorporate an explicit time parameter),
as a traditional first order algebraic structure; rather it is a particular example
of a Memory Structure, a mathematical object used to model both the dynamic
state of various types of Random Access Memories and the operations upon them.
Another example of the increased complexity is that in opposition to the pure case
there seems to be no obvious schema for defining primitive recursive functions, see
(Moschovakis, 1969). Since non-well-foundedness substantially complicates the
problem of totality, simple recursion must be replaced by recursion with respect
to a spanning tree. This is also reflected in the more complex induction principles
that are required. Another aspect where pure Lisp and destructive Lisp differ is
in the richness of the control primitives. In pure Lisp the only control primitive
other than function application is the branching primitive, if. In destructive Lisp
we also require a lexical variable binding primitive, let, and for ease of reading, a
sequencing primitive seq.

One of the main aims of this work is to overcome the problems just indicated
and develop a theory as mathematically elegant as the pure Lisp case.

1.3. An Outline

This work is divided into eleven chapters. The first, this one, serves as an in-
troduction. The second chapter deals with the underlying model, both of the data
structure and the computation theory. We introduce a mathematical model called
a memory structure. It will be the basis for the semantics of the various languages
we shall introduce and study. We then define, over an arbitrary memory structure,
a language and corresponding computation system. In chapter three we introduce
several equivalence relations and give some simple examples of their properties
and use. The most important of these equivalence relations is that of strong
isomorphism, which unlike the others is preserved under many standard syntactic
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manipulations. In fact implicit in our work is the claim that strong isomorphism is
to destructive Lisp what Lisp equality is to pure Lisp. These equivalence relations
have the property that it is effectively decidable whether or not two expressions
that contain no recursively denned functions are so related. Chapter four then pro-
vides a plethora of examples concerning these relations, mostly of the intensional
relation, strong isomorphism. These examples range from very simple programs
to more complicated programs that have been the subject of many papers in the
existing literature. Chapter five deals with certain theoretical results concerning
memory structures and destructive Lisp in particular. The effectiveness theorems
amongst others are proved in this chapter. In chapter six we use these equivalence
relations to compare the strengths and weaknesses of various fragments of Lisp.
In chapter seven we examine rules for deriving or transforming programs, in the
spirit of (Scherlis, 1980). The next three chapters are devoted to three complicated
programming examples. The first is an extended example based on the Robson
marking algorithm; we also give an alternative proof of the correctness of the Rob-
son copying algorithm (Robson, 1977) to the one given in (Mason and Talcott,
1985). The second example deals with an important feature of Lisp, namely that
Lisp programs are Lisp data and that there is a universal program, eval. This
allows us to define an internal programming language with somewhat richer fea-
tures, such as self destructing macros, than our external computation theory. The
final example deals with an efficient data editing program. The final chapter then
summarizes the main results and draws some conclusions concerning the present
and future work. A succinct treatment of many of the highlights of this book can
be found in (Mason, 1986). This work grew out of the work described in (Mason
and Talcott, 1985) and (Mason, 1985) and is a companion to (Talcott, 1985a).

1.4. Notation

We complete this chapter by describing some of our notation. The usual
notation for set membership and function application is used. Let D, D0, DI,
... Dn be sets, then D0 ® DI is the (disjoint) union of D0 and Dj. DO ® • . • <8> Dn_i
is the set of n-tuples with ith element from D; for i < n. We write D^") for
DO ® ... ® Dn^i when each Dj is D. D* is the set of finite sequences of elements of
D,

D* = |J D(n>.
n€w

Some notation for sequences follows, e is the empty sequence, the unique element
of D(0) for any domain D. For d,d0,...,dn_i,dd,... ,d'm_i e D, the sequence
of length n with ith element di for i < n is written [do,...,dn-i]. Let v =
[do,...,(2n_i], u = [d0,... ,<4,_!] and i < n then \v\ is the length of v while
vk is the ith element of u, namely d,. v*u — [ d o , . . . ,dn_i,d{,,... ,d'm-i] is the

df
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concatenation of v and u. We identify d with the singleton sequence [d]. Note that
(u * v) * w = u * (v * w) and [ ] = e.

PWD is the domain of finite subsets of D. [Do ->- DI] is the set of total
functions from D0 to DI, and [D0 ~f- DI] is the set of partial functions. If (J, £
[Do ~*- DI], then 8ft is the domain of /z and /fy is its range. For d0 6 D0,di 6 DI,
and yu e [Do ~*- DI] we let

be the map fig such that ^Mo = 6p(J {do}, ^o(^o) = di and ^(d) = n(d) for
d^ d0,d 6 (5^.

Some particular sets that we shall use frequently are as follows. TL is the
set of integers and z,zo, ... range over Z . N = {0, 1,2, . . .} is the set of natural
numbers and n, n0, ... range over N. We consider a natural number to be the set
of numbers less than it; thus the less-than relation, <, is simply the membership
relation, 6, of set theory. We let T = {0, 1}* be the complete binary tree, i.e.
the set of finite sequences of O's and 1's. We use 1" to denote the sequence in T
that consists of exactly n ones. Note that 1° = e. We shall adopt the convention
that trees grow downward and <r, cr0 , ... will range over T . We use two partial
orderings on T . The initial segment relation, <, and the Brouwer-Kleene linear
ordering, -<. <TO < &1 is taken to mean that a\ is below <TQ in T , while (TO -< v\
means that <JQ is before a\ in T . The below relation is defined by

<7o < ffi ^ 3<r ^ e (cr\ = a0 * a)

and the before relation is defined by

ffQ -< <J\ <-> (To < <?l V 3(T,<72,<73(cro = < T * 0 * < T 2 A < r i = < 7 * l * CT3).

The before relation is also known as the depth-first ordering.



Chapter 2

The Basic Theory of Memory Structures

In this chapter we shall develop the basis, or model theory, upon which all our
work will be built. The models (semantics) of this theory, the so called memory
structures, are the subject of the first section. In the second section we define a
language and corresponding computation theory.

2.1. Memory Structures

In this section we introduce the notion of a memory structure over a set A of
atoms. The purpose is to model the memory of a Random Access Machine (RAM)
and to study the abstract structures typically represented in such machines. The
memory of a RAM can be thought of as a collection of locations or cells (at any
particular time this collection will of course be finite). The machine uses these cells
or locations to store various types and quantities of objects. There are machine in-
structions for accessing and updating the contents of memory cells. Some objects
are intended to represent abstract quantities such as numbers, boolean vectors,
characters, etc., and there are machine instructions for computing functions on
these abstract entities, such as arithmetic operations and boolean functions. The
exact nature and number of the objects storable in each location varies from ma-
chine to machine; we shall abstract away from this machine dependent aspect of
memory. Consequently we shall assume that our hypothetical machine can store
a sequence of objects (the sequence being of arbitrary finite length), each object
of which is either an atom from A or the address of another location in memory.
An address in this sense is simply some specification of a location by which the
machine can access that location (and its contents). Again the precise nature of
these addresses will vary from machine to machine, and so again we shall abstract
away from these implementation dependent details.

In this work we shall be mainly concerned with S-expression memories that
can only store pairs of objects in each location; however we shall treat the general
case first, leaving S-expression memory structures as a particular example. This
is because the theory we develop can easily be extended to handle other data
structures such as arrays, records, vectors and probably even xectors (Hillis, 1985).

Let A be some fixed set of atoms and C some countably infinite set disjoint
from A. C is the set of memory cells of our hypothetical machine. The elements of
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the sequences that are stored in these cells are the memory values and we denote
them by V . Thus V = A ® C. A memory fj, is a function from a finite subset of
C to the set of sequences of memory values, V* = (A ® C)*. Since we wish //(c)
to represent the contents of the location c in the memory //, we also require that
those cells which occur amongst the contents of cells are also cells in our memory.
Thus we define a memory fj, to be a finite map such that

/*€ [«„ ->- (6,,. @ A)*].

where 5^, the domain of fj., is a finite subset of C . The set of all memories over
A and C is denoted by M1(A,C)-

Now suppose that M is a set of memories. A memory object of Ml is a pair

such that n is a memory in M and the sequence [VQ, . . . ,wn-i] satisfies u; 6 6p ®
A for i 6 n. Thus a memory object is a memory together with a sequence of
memory values which exist in that memory. The reason we consider sequences
of memory values and not just singletons is twofold. Firstly, we often want to
apply a memory operation or defined function to several arguments all of which
we assume exist in one and the same memory, and, secondly, the behavior of many
of the memory operations is not determined simply by the pointwise nature of its
arguments but also by how they sit with one another — for example, if they share
structure. Hence when defining equivalence relations the pointwise approach is
next to useless. A memory structure is defined to be a set of memories Ml together
with a set of operations O, which are allowed to be partial, on those memory
objects of Ml. The operations model the machine instructions for manipulating
objects. We usually refer to a memory structure by its collection of memories Ml,
taking the operations to be implicit. We also abuse notation and refer to the set of
memory objects of a particular collection of memories Ml simply by M ; context and
notation should always prevent confusion. One last abuse of notation is that by
Mr") we always mean the collection of memory objects whose sequence of memory
values is of length n. For ease of reading we let fJ,,fJ.o, • • • range over memories,
u, UQ, ... range over V , a, a0, ... range over A and c, c0, ... range over C .

2.1.1. Definition of a Memory Structure Ml

We can summarize the above definitions as follows:

• A and C are disjoint sets, C is countable, and V = A ® C is the set of
memory values.

• A memory is a finite map fj, from C to V* such that \i 6 [6^ ->- (6,, ® A)*].
The set of all memories over A and C is denoted by M(/|,c)-
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. Let y be a set of memories. A memory object of y is a tuple VQ, •.., vn-i ; ̂
such that n is a memory in y and v; € Sp ® A for i £ n.

• We write [VQ,. • • ,vn-i] ! M £ MK") to emphasize the length of the memory
value sequence.

« A memory structure is a set of memories y together with a set of operations
O on memory objects of y.

2.1.2. The S-expression Memory Structure

As a particular example of a memory structure we now present the S-expression
memory structure. It should be very familiar to those readers acquainted with any
Lisp-like language. We often assume that the integers TL are contained in A. A
will always be assumed to contain two non-numeric atoms T and NIL, representing
true and false. NIL is also used to represent the empty list. We shall also assume
that there are an unlimited collection of non-numeric atoms other than the two
just mentioned. We shall usually denote them by strings of upper case letters IN
THIS FONT. Thus for our purposes the following are also in A :

INFINITY, M10, THIS:ATOM,...

The set of S-expression memories, M3exp, is defined by:

Msetp = {n 6 M(AiC) I H € [«„ ->-

Thus, as we mentioned earlier, the S-expression memory can only store pairs of
memory values in its memory locations. It is traditional to call these binary cells
Cons cells. To complete our specification of the S-expression memory structure
we need only describe the operations Oseip-

Oselp = {int, atom, addl, subl, eq, cons, car, cdr, rplaca, rplacd},

the definitions of which are: int and atom are characteristic functions (recognizers)
of 1 and A , respectively, eq is the characteristic function of equality.

, ( T ; n if v 6 TL
mt(v ; u) = < ,TTT ... . _

(^ NIL ; n if t; 0 TL

if v e A
. f w ^ A

f T ; u if VQ =
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addl and subl are the successor and predecessor functions on 2.

addl (z ; fj,) — z + 1;/j,

subl (z ; /z) = z — 1; /z

The cons operation is a pair constructing function and car and cdr are the cor-
responding projections. Note that cons enlarges the domain of the memory by
selecting a new location from free storage and making the arguments of the func-
tion its contents. The method of selection is of no concern to us, but can be
assumed to be random for the time being. The free storage of a memory /z is just
another name for C — 8^.

cons(VQ,VI ; ft) — c; fj,0 where c^S^ and fi0 = fj,{c-*-[vo,Vi]}

car(c ; n) = VQ ; n given n(c) - [«0, ̂ i]

cdr(c ;n)=vi;n given /z(c) = [u0, «i]

The destructive memory operations rplaca and rplacd update the contents of a
pre-existing location in memory. The domain of the resulting memory object is
unchanged. By the use of these functions one can obtain memory objects that
store their own locations.

If /z(c) = [v0,vi] then

rplaca(c, v ; /z) = c ; /J.Q where p0 — fj,{c-^-[

rplacd (c, v ; ft) = c; fj,0 where /j,0 = fi{c-t-[vo,v]}

In some cases we shall not be interested in the value of the rplacx operations,
x £ {a, d}, so for convenience we define the operations setcar and setcdr.

setcar(c,v- fj,) = Mc+KMc)ii]}

setcdr(c, v ; p) = n{c+[n(c)l0,v}}

Note that rplacx(c, v ; n) = c; setcxr(c, v • fj.) for x 6 {a, d}.

2.1.3. Summary of the Definition of Maexp

• A and C are disjoint sets, C is countable, and V = A ® C is the set of memory
values.

A Lisp memory is a finite map p from C to V^2) such that /J, G [Sp ->-
]. The set of all Lisp memories over A and C is denoted by Maexp.
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A memory object of Maexp is a pair

consisting of a memory /z in M3exp and a sequence of memory values which
exist in that memory, in other words v; G 6^ ® A for i 6 n.

/ \

• We write [VQ,. .. ,«n-i] i A* £ M«eip to emphasize the length of the memory
value sequence.

• The S-expression memory structure consists of the Lisp memories ysexp to-
gether with the set of Lisp data operations ®3exp on these memory objects,

Oaexp = {int, atom, addl, subl, eq, cons, car, cdr, rplaca, rplacd}.

2.1.4. Fragments of Msexp

Two familiar examples of memory structures are obtained by considering the
following two sets of memory operations on MSezp:

Opure = {int, atom, addl, subl, atom:eq, cons, car, cdr}

®pure+ = {int, atom, addl, subl, eq, cons, car, cdr}

All the operations are as defined previously except atom:eq which is, the
characteristic function of, equality on A :

f T ; u i
atom:eq(v0,vi ; /u) = < ';

[ NIL ; n
if v0 = vi and VQ, v\ 6 A
otherwise

We call the memory structure with operations ©pure the pure Lisp memory
structure, denoted by Mpure. Finally we denote the memory structure with oper-
ations Opare+ by Mpure+. Notice that these memory structures all have the same
set of memories, consequently a simple comparison of functions definable in each
structure is possible.
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Figure 2. A Simple S-expression

2.1.5. A Low Level Lisp Data Structure

Another example of a memory structure can be obtained by considering a
low level implementation of Lisp, one in which cons cells have mark and field
bits. Such a memory structure is required to express and prove properties of
such fundamental Lisp programs as the mark and sweep garbage collection, and
programs it uses such as the Deutsch-Shorr-Waite marking algorithm. The mark
and field bits in this version only take on two values, 0 or 1. Thus we have the
following set of memories, Mmfsexp.

Mmfsexp - {/i 6 M(AiC) \p € [«„ -> {0,1}(2) x V(2)]}

Om/sezp = Oaezp U {m, setmj, set/}

Over this structure car and cdr access the third and fourth elements and m returns
the value of the mark bit, while / returns the field value, cons returns a new cell
with the mark and field bits set initially to 0. setm and setf simply update
the mark and field bits, respectively. The rest of the operations are the obvious
modifications.

2.1.6. The Derived Tree Function Xx.(v ; p)x

There is a very simple way of regarding an S-expression memory object as
a labelled, possibly infinite, rational tree. For example consider the S-expression
depicted in figure 2.

If we regard elements of the binary tree, T , as describing possible paths
through this structure, (0 representing the car direction, 1 the cdr direction),
then we can represent the structure by the subtree of T consisting of all possible
paths through it, labelling these paths by the elements of V at their ends. Thus
paths that are labelled by atoms will be terminal and those labelled by cells will
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rn

100

Figure 3. The Rational Tree

have exactly two immediate subtrees. For example the tree associated with the
structure in figure 2 is pictured in figure 3.

This way of viewing S-expressions is made explicit by the following. For
v ; /j, G Maexp we define a partial function

from T to V and its domain

by induction on T:

v if a = e, the empty word in T
H((v ; A*)ffo)l i if <7 = <TO * «, « 6 2 and (v ; /z)ao £ C

When referring to the tree function \x.(v ; fj,)x we drop the A and simply write
(v,fj,). Thus, (v,fj.) is the function from T to V with the smallest domain satisfying:

. e £ £(„.„) and (v ; n)e = v

and if <T e ^(«;/t) and (v ; /Lt)^ = c 6 C then
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. u *j £ £(»;/,), and

• (v ; fJ.)<r*j = Mc)-lj for j £ 2.

Our notation in this regard is derived from that of (Moschovakis, 1969).

We call (u ; /^) the derived tree function, or the labelled tree that is defined by
v ; p. Note that the following are true for these functions.

Proposition: For any v ; fj, 6 M3exp

0. S(V;n) is a non-empty subtree of T.

1. If a * j 6 f>(V;p) for j G 2 then (v ; //)<, € C, and conversely if (v ; fj,)a € C then
0" * j £ £(»;/o for 3 6 2.

Furthermore if CTO * <TI £ ^(»;^) then

2. <TO 6 £(«;/») and a\ G ̂ ((t.;^)^;^)

3. (U;P) C T O *<TI = ((" ; /*)<TO ;/*Vi
We shall sometimes refer to a (when a is in the domain of the derived tree

function of a memory object v ; \j, ) as a car-cdr chain in v ; /f, for the obvious
reason that (v ; /i)CT is the atom or cell one obtains by a suitable composition of
the memory operations car and cdr. Thus we can define the notion of the cells
of a memory object which are accessible by car-cdr chains. We define Cells^(u)
to be the set of cells that are reachable from v ; n by travelling along any car- cdr
chain, and Cells^(u) to be the set of cells reachable from v ; fj, by travelling along
any non-empty car-cdr chains. Thus

= {c€C\(3a)(v;fj,)ir=c}
df

= {c £ C|(3a ^ e)(« ; p), = c}

We also let CeHs^u) = |J Cells^C?;^) and Cells <(u) = (J Cells<(u|,.).
df i€\v\

We shall often regard Cells^(t;) as a sequence rather than a set, ordered in some
particular fashion. For this and other reasons we define the notion of a spanning
tree and fix a particular one for such purposes.

2.1.7. Spanning Trees

For c ; jj, 6 Msexp we say that X is a connected subset of Cells^c) if X is
the image of a subtree of T under the map (c ; /z). For X, a connected subset of
Cells^c), we define a spanning tree for X at c ; /z to be a set S C T having the
following properties:
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1. (Vw 6 -Y)(3! cr e 5)(c ; n)a = u, and

2. 5 is a subtree of T.

For convenience we say that a cell c; is left (right) terminal with respect to a
spanning tree 5 (at c ; /u) if 3<7 G S c; = (c ; /j)a but cr * 0 (a * 1) is not an
element of S. For example in the Robson marking algorithm that we examine
later on we use terminal to mean terminal with respect to the left-first spanning
tree. There are various well known spanning trees for graphs (Aho, Hop croft and
Ullman, 1974). We shall be using the left-first spanning tree in this book. The
left-first spanning tree of Cellsp(u) can be defined as follows. For c e Cells^(u)
the function Lefto;M:[Cells^(v) ->- T] chooses the least path in fj, from v to c with
respect to the Brouwer-Kleene ordering (^).

Leftt);^(c) = ff -> (v ; n)a = c A V<TO((U ; /j) f fo = c -»• a d <r0).

The left first spanning tree of v ; fJ, is then the image of Left^;A, and is denoted by

p df

The left-first spanning tree of Cells^(u) can be defined similarly as follows, assum-
ing |v| = k. For c G Cells/J(w) the function Lefts^: CellsA,(u) -V fc x T chooses
the least path in p from v to c with respect to the lexicographic ordering, <, of
n X T, the ordering on n — {0,1,..., n — 1} being the usual one and the ordering
on T being the Brouwer-Kleene ordering (^).

Lefte;/t(c) = [i,a] —» (f|i; n)a = c A (V<r

The left-first spanning tree of v ; £( is then the image of LeftS;^ and is denoted by

Ae... = {LeftS;/,(c)|cG Cellsp(t;)}
df

When we consider Cells^(i;)as a sequence we always assume that it is ordered in
this left first fashion.

Now given that 5 is a spanning tree for X at c; fj, and CQ G X, we say that c\
lies below CQ in S if 3(To,<7i G T such that

1. <T0,cri G 5

2. (c ; /j)CTi = Ci, for z G 2, and

3. <TO < ^i in T.

Similarly we can talk about CQ being above, to the left, or to the right of c\ in S.
We also put

S'(co) = {ci | ci lies below CQ in 5}.

Observe that S(c0) C X and that if c\ lies below c0 in 5 then S(ci) C S(c0) with
equality holding only when CQ = c\.



20 The Basic Theory of Memory Structures

• I7R*-NIL

I I * T~

Figure 4. A Typical List

2.1.8. Subdomains of M,exp

We can now define some well known subsets of Maexp. The first, Mwf, is the
class of well-founded S-expressions and is defined using the tree function:

Definition: We say that v,fi is a well-founded S-expression, written v;^i € Mwf,
if 8(v-,ft) is a well-founded tree. In other words

(Vc 6 CellsM(w))c # Cells<(c).

It is important to notice that if c* G Cells^(c) and c; fj, G ML/ then

Cells^c*) C CellsM(c)

with equality holding only when c* = c. This provides a very simple measure upon
which to perform induction.

Definition: There are two different notions of list depending on whether one
allows cyclic lists. We shall refer to the non-cyclic version as Mnst and the possibly
infinite variety by Menst.

v;n& Miist «-+ (3n 6 N)( t>; ^)i- = NIL.

Thus c ; n is in Must iff some c<fr-chain leads to an atom and this atom is NIL.
Thus the typical non-empty list can be represented as in figure 4.

The collection of possibly cyclic lists, Me/tsti is defined as follows:

v ; fi G Me/i,t <-> (Vn 6 N)(ln G £(„;„) A (v ; /a)in e A -» (u ; /x)i« = NIL).
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I I I

Figure 5. A Typical Cyclic List

NIL

Figure 6. A Typical Pure List, a

Thus a typical element of Me;ist — ̂ liat is represented in figure 5.

To make talking about lists somewhat easier we have the following notation.
The set of cells that are reachable from a non-NIL elist, c ; fi £ Menst, only by
using the the function cdr is called the spine of the list. Namely

Suppose CQ ',

Spine/c) - {(c ;

Mnat is such that

ci/0} - {NIL}.

with no(ci) — [vi , Ci+i] for i 6 n and ^o(cn) = bn , NIL]. Then we say c0 ; Ho
represents the Lisp list (VQ v\ v^ ... vn), represented diagramatically as in figure
6.

We call the Vi the elements of the list CD ; Ho and put ElementsMo(co) =
[VQ, . . . , vn]. We say CQ ; ̂ o is a pure list if Spine/10(co) is disjoint from the set

|J CellsMO(«0.
vt EElements,!,, (c0)

A pure list is determined up to isomorphism (to be defined later) by the sequence
of its elements.
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2.2. Computing over Memory Structures

Thus far we have described the underlying data structure. We now turn to the
syntax of our language and its subsequent semantics. This we do in three steps.
We first define a class of expressions, E , in a lexically scoped Lisp-like language.
Secondly using these expressions we specify how functions are to be defined. Fi-
nally we define a certain class of objects, called memory object descriptions, which
are pairs consisting of an expression with no free variables, together with a memory
in which every cons cell appearing in the expression exists in that memory, i.e. is
in its domain. On these objects we define a sequential reduction relation which de-
termines the computation that these memory object descriptions describe. Using
this reduction relation on memory object descriptions we can describe the partial
functions that are determined by our definitions. The basic rules for computation
are given by a reduction relation on memory object descriptions, eg ; /UQ ~^>D e\; /ui.
This relation is generated by two sets of rules, the primitive cases and the congru-
ence cases. That is, ^>D is the least transitive relation containing the primitive
cases and closed under the congruence conditions. The primitive cases correspond
to primitive machine instructions for branching, sequencing, variable binding, ex-
ecution of memory structure operations and function call. The congruence cases
are rules for reducing sub-expressions in order to reduce descriptions to primitive
cases. They determine which sub-expression may be reduced and the effect of that
reduction on the description containing it. The computation theory as defined in
this section holds for an arbitrary memory structure; however, the reader may
find it helpful to keep the S-expression memory structure in mind since it is the
example that we are most interested in.

2.2.1. The Set of Memory Expressions

The set of expressions of our language, E , is defined as follows. Let X and F be
disjoint countable sets. Elements of X are memory variable symbols and range over
memory values. Elements of F are function symbols, each with an associated finite
arity. Finally there are constant symbols for the atoms and memory operations of
M. However, we shall not make any attempt to distinguish between an atom or
operation and the constant that denotes it. We use x, XQ, ... for elements of X, /,
/o, ... for elements of F, and e, CQ, ... for memory expressions. The set of memory
expressions is defined inductively to be the smallest set E containing

and closed under the following formation rules:

• if eteat,ethen,eeise e E then if (etest,ethen,eeise) e E;
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• if ej,. . . ,en,et0dv 6 E and xi,. . . ,zn € X are distinct then

let{xi -<-ei, . . . ,zm -i-em}e60dj, € E;

• if ei,... ,en e E then seq(ei,... ,en) € E;

• if $ is either an n-ary memory operation or n-ary function symbol from F,
and ej , . . . , en € E then •Q(e\ , . . . , en) £ E;

Although we have allowed cells, or at least constant symbols denoting them,
to appear in expressions, we warn the reader that this will only occur in special
contexts. These contexts, which will be defined shortly, are called memory object
descriptions. The reason for these restrictions is quite simple. If we allowed arbi-
trary cells to appear in expressions then those expressions could only be evaluated
or have meaning in a context, or more appropriately a memory, in which those
cells were denned. We shall repeat this warning when we define the appropriate
contexts.

The only variable binding operation is let. let{j/i -<- ei, . . . ,ym -<- em}e-body
binds the free occurrences of y; to the value returned by e; in e^ody It can thus be
thought of as either a substitution primitive or else simply a more readable form
of X-application since

let{yi -<-ei , . . . ,y m •+em}ebody

is equivalent to

The {yi -<- ei, . . . ,ym -^em} part of a let expression is called the binding
expression. For a memory expression e the set of free variables in e, FV(e),
is defined in the usual manner. We say that e is closed if FV(e) is empty.
e{yi -«-wi, . . . , ym -4- vm} is the result of substituting free occurrences of the yi
in e by the values Uj, or to be more precise the constant symbols denoting them.

Definition: We call an expression which contains n o / S F o r c E C a primitive
term or more often simply a term.

In addition to the basic constructs of our language, we also use constructs
like and, not, or and if n. They are taken to be the usual Lisp abbreviations or
macros, namely:

and(ei,e2) = if (ej ,e2 ,NIL)
df

or(ei,e2) = let{*i -s- e1}if(<i,t1,e2)
df

not(e) = if(e,NIL,T)
df

e e c / s e ) == i
df
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In addition we have a cond-like construct if s, where

ifs(e°,e°,...,e0",e?) = if (e°,e«, if (ej, e j . . . if (e0",e», NIL)...))).
df

We also write expressions such as

leto<j<n{a'i; ~t- &j}&body to denote letjxo -<- e i , . . . , xn -<- en}&body

and
se<lo<j<n(ej) to denote seq(e0,..., en).

We shall discuss macros in more detail in chapter 9.

2.2.2. Function Definitions

A system of memory function definitions D is a collection of equations of the
form

/o(^o) <— eo

that satisfies the following conditions:

• Each Xi = [x'0, . . . arjnj-i] is a sequence, without repetitions, of variables from
X of length mi.

• fi is an mj-ary function symbol from F.

• e,- must be a memory expression such that the free variables of e,- are a subset
of x;, the only function symbols that occur in e,- are among /0, ...,/„, and
no c £ C occurs in any of the ej.

We are somewhat liberal in what we use as variables and function symbols,
using words with suggestive names. As an example of typical definitions we give
those of append, memq and inplaceireverse:

append (u,v) <— if(u, cons(car(n), append(cdr(\i)),v)), v)

memg(element,list) <—

if(list,

if(eg(element, car(list)),T, mem5(element,

NIL)
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inplace:reverse(\i) <— in:rev(a., NIL)

in:rev(M, v) <— if(u, m:rev(c<Zr(u), rp/acd(u, v)), v))

The append program as written here simply copies the spine of its first argument
and attaches it to the second argument. Notice that the definition actually is in
the pure fragment Mpure. The memq program, written in the Mpure+ fragment,
simply determines whether or not its first argument is a member of the second
argument, which is supposed to be a list. inplace:reverse destructively reverses
a list; in some Lisp dialects this function is called nreverse, see (Pitman, 1983),
(Touretzky, 1983) or (Steele, 1984).

If D is the system of definitions

D=

then we say D is a tail-recursive system if and only if no function symbol /*, which
is defined in D, appears in D either in:

1. the test-expression of an if expression,

2. a binding expression of a let expression,

3. an expression other than the last in a seq , or

4. an expression that is an argument to a function or operation symbol in D.

It is well known that functions so defined can be implemented on low-level machines
without the use of a stack; for a logical treatment see (Tucker, 1980) or (Friedman,
1971) and for a discussion relating to compiling (Steele and Sussman, 1976). For
example, the memq and inplace:reverse definitions above are both tail recursive
whereas the append program and the following definition of the list length function

length(list) «- if (list, addl(length(cdr(list))),0)

are not tail-recursive. However the following system, which defines an extensionally
equivalent length function, is tail-recursive.

length(list) «

Jen(list,n) <— if (list, fen(c«Jr(list), addl (n)),n)
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2.2.3. Memory Object Descriptions and »D

A closed memory expression together with a suitable memory describes the
computation of a memory object. Such pairs are called memory object descriptions.
To make the notion of suitable precise, we fix a system of function definitions

D=

Definition: A memory object description with respect to D is then defined to
be a pair e ; fj, that satisfies the following conditions:

• e is a closed memory expression, i.e. e contains no free variables

• any c which occurs in e is also in 8^, and

• every function symbol / G F which occurs in e is defined in D.

Remark: As we have already mentioned when we defined the class of expres-
sions, we shall make the following important convention. Only in the context of
memory object descriptions shall we allow expressions to contain cells; thus when
we say e(x) is an expression we shall implicitly be saying that no cell c 6 C occurs
in e(x). It is only when we evaluate e(x) at some memory object v ; (j, that we
shall allow cells to appear in e. By evaluating e(x) at v ; n we mean reducing the
memory object description e ( v ] ; fi.

The basic rules for computation are given by the reduction relation ^>D on
memory object descriptions. It is the least transitive relation containing the single
step reduction relation, —>>D, which is generated by the rules given below. As we
have already mentioned, the primitive cases correspond to primitive machine in-
structions for branching, sequencing, variable binding, execution of memory struc-
ture operations and function call, while the congruence cases are rules for reducing
sub-expressions in order to reduce descriptions to primitive cases. They determine
which sub-expression may be reduced and the effect of that reduction on the de-
scription containing it. We have adhered to the Lisp convention of call-by-value,
and that arguments of functions are evaluated in a left to right order. The reader
is reminded that v,v0,... range over V , and that these are entities which cannot
be further evaluated.

Definition: The single step reduction relation, —>>D, is defined to be the small-
est relation on memory object descriptions that satisfies the following two sets of
rules.
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• Primitive cases:

I eeise 5 M if ^o == NIL

seq(e); fj, -»D e ; M

seq(v0,ei,...,ero);M -»D seq(ei,... ,em); M

if i5 is a memory operation and i?([ui,..., vn]; M) = ^o ; Mo

$(i>i,. . . , vn) ; M —>> e{yi -<-ui! • • • iVn -<- un} j M if tf(yi,.. . ,j/»)-«-e is in Z?.

• Congruence cases: If ea ; Ma —>>D e j ; ^b then

seq(e0,...) ; Ma ->>D seq(e6,...) ! Mb

let{yi -<-ui,. . . ,yj-i -4-Vj-i,yj -<- ea , . . . ,ym -<- em}e ; Ma —»>

As we have already stated, the reduction relation on memory object descrip-
tions, eo ; Mo ̂ D GI ; Mil is the transitive closure of the single step relation. We
say e; M evaluates to UQ ; Mo if e; M ̂ D ^0 i Mo for some VQ £ V. To emphasize D we
sometimes say e; M evaluates to VQ ; Mo with respect to D when e ; M ̂ >D «o ; Mo for
some VQ € V. More often than not, though, we leave D implicit and simply write
e j M ̂ * uo i Mo-

We can now easily describe the functions determined by our definition D.
Namely if i9 is defined in D and (y i , . . . ,y n ) are its arguments then the corre-
sponding partial function

^ : ^sexp ~^ Maexp

is defined by

. . , v n ; M > v0 ; Mo-
df
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2.2.4. Remarks

• It is easy to see that for any memory object description, at most one of
the single step rules applies. Thus the single step relation is functional as is the
corresponding evaluation relation e ; fj,0 >D v ; n\.

• We use memory operation and function symbols in two contexts: in terms
denoting memory objects and in memory object descriptions. In the term context
we include the memory as an argument while in the memory object description
the memory is not included in the argument. For example, car(c; fi) is a term and
car(c) ; n is a memory object description, and we have car(c) ; \i ^>D car(c ; /u).
The two uses of operation and function symbols should cause no confusion.

• The values of the binding expressions of a let construct are evaluated in
sequence. Then the free occurences of the variables in the body of the expression
are replaced by the corresponding values. The binding expressions are evaluated
in their original environment and not the one being created by the let. So, for
example,

let{zo -4- e0, x-i x- ei}ebody

will not always reduce to the same value as

-<- e0}let{a;i

The seq construct provides for sequencing of computations. It is similar to
the PROGN construct of Lisp . We should point out that seq is definable in terms
of let since

seq(e0,ei,...,en)

is equivalent to
let {20 -+e0,xi -eei,. . . ,xn -*- en}xn

Definition by cases is handled by the if construct. Notice that as usual in Lisp
any non-NIL value of the test is considered true..

• We have not included a means of dynamically assigning values to variables,
such as the Lisp SETQ mechanism. For present purposes the inclusion of such
mechanisms mainly complicates the semantics, while it does not enlarge the class
of definable functions. They become interesting in a computation theory where
functions can be returned as values.

• Our notion of memory structure is essentially that of (Burstall, 1972), al-
though the presentations are somewhat different. Burstall treats computations
described by flowchart programs and develops proof rules for proving properties of
certain list and tree like memories. We treat computations described by systems
of recursive definition and prove properties of the functions described by these
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computations. In this book we treat a larger variety of programs acting on much
less restricted domains. We focus on mathematical properties of the S-expression
domain and only develop formal proof-rules as a by-product of such activity. We
should also remark that some of our notation and methods are derived in spirit
from (Topor, 1979), although in the world he created, cells had mark and field
bits.

2.2.5. Example of a Computation

Consider the following pictorial example of the process of evaluating a memory
object description. Suppose that

coras(A, cora.s(B,NIL)) ; 0 > c0 ; fJ,,

then we can represent CQ ; /u by the boxes and pointers diagram shown in fig-
ure 7 (here 0 denotes the empty memory). Then the memory object description
inplace-.reverse(co); n evaluates in the fashion depicted in figure 8.

Figure 7. The Boxes and Pointers picture of CQ ; fJ.

2.2.6. Functions and Transformations on Expressions

To complete this section we describe some functions and transformations on
expressions that will prove useful later. The first is the rank function on expres-
sions. It will often be used when proving facts about primitive terms.

Definition: The rank of an expression, r(e), is defined by induction on the
complexity of expressions as follows.

oo if e = $(ei , . . . , ej-\) and $ G F,
0 if e 6 X U A,

ei)>r(e2)} if e = if (60,61,62),r(e) =
" ^ 1 + r(e0) + ... + r(en) if e = seq(e0 , . . . en),

+ r(e0] + ... + r(en) + r(e) if e = Iet{y0 -«-e 0 ) . . . ,y n -een}e,
+ Kei) + ... + Ken) if e = ??(ei, . . . ,en) and i? £ O.
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inplace:reverse(co) ;

NIL

* t
A B

in:rev(co, NIL) ; n

A B

m:re»(ci,co);

r r

Figure 8. The Evaluation of inplace:reverse(co ) ; /

The simplest result concerning this rank function is the following:

Proposition: If e(x) 6 E and v ; /j, 6 MU^p'*' are such that e(v) ; ̂  > u* ; p*
via a single step reduction sequence of length N, then N < r ( e ( x ) ) .

The next example is a transformation on expressions named after the unfold
transformation in (Burstall and Darlington, 1977).

Definition: The unfolding, e***, of an expression e with respect to the definition
D is defined by:
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if(e^'(
let{yo-«-egV..,yn

if e 6 X U V,
if e = if (etest, ethen, ee!se),
if e = seq(e0, . . . en),
if e = Iet{y0 -«- e0, . . . , y» -*• en}e6

if e - 0(ei , . . . , en) and 0 € <D*exP

if e = 7?(ei,. . . ,en) and tf(y) •«- e,,
otherwise .

D

Iterations of the unfolding operation are defined as follows: e** = e and
eM = (e"4 )M. Another such transformation is the skeleton, e(, of an expression
e and is defined, as was the unfolding, by induction on the complexity of terms.

e
if(el

teat

seq(eo,

Iet{y0 -

. N I L

Jcthen'

••<)
<-€„, . .

,o
, yn

if e 6 X U V,
if e = if (eteS«, e tften, ee;se),

if e = seq(e0, . . . en),
if e = Iet{y0 -e e0, . • . , yn -+• en}ebody,

if e = tf(ci,...,en) and tf e Oselp,
if e = i?ei , . . . ,en) andi9eF.

These two transformations will prove useful later. Notice that e1 is always a
primitive term. A simple result concerning these transformations is:

Proposition: If e(x) 6 E is such that all / G F which occur in it are defined
in D and v ; \i £ MSeip satisfies e(v) ; fj, ~^> v* ; fi* via a single step reduction
sequence of length N, then (eM )!(u) ; ̂  > u* ; //* via a single step sequence of
length < N.

The next example is a transformation on pure or pure+ definitions that is
generated by a transformation on expressions. It has to do with so-called derived
functions. The idea is this: suppose we have a definition D

D =

and a memory operation or function symbol 0 € ®pure
wishes to construct a definition D*e of the form

• > / » » } > Then one
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in such a way that /' and /; have exactly the same arity and domain. Furthermore
fi (*>) > V- is to compute the number of calls to 6 that occur in the process of
evaluating f i ( v ) ; /j.. For example if 0 — cons and f i ( v ) ; p >D u ; JJL* then f\ (v) ;
H >D" JV ; /i** where

jv = |v-^l-
Before we give the transformation it should be noticed that we are defining it only
for definitions in Mpure+. Although it can be done in general, the solution is not
as elegant and we leave it as a programming problem for the so-inclined reader.
The first step is to define a transformation on expressions. Like those above this
is done by induction on the complexity of expressions.

0 if e 6 X U V,
eJ9 + ... + e*f if e = seq(e0 , . . .en),

. . . + eff ) if e = 0(e), d € Osexp and 0^
»* + ... + 4(') if c = T ? ( C I , . . . ,en) and 0 = 0,

e»' + . . . + c«? + /J9(e) if e = /(e) and / e F,
if (etea«, effsl + e**en, e?f3t + e%te) if e = if (etest, e(f ten, ee,se),

if e =

We then define Z?'fl to be as above. Rather than spend the time making the
notion of the number of calls to 0 precise, we simply state part of the main result
concerning this transformation in the case when 0 = cons:

Proposition: If D is a pure+-definition, e(x) € E and v ; // E Mlaeip then
e(w);p denotes with respect to D if and only if e'e(w);/u denotes with respect to £)'*.
Furthermore if 0 = cons and /,-(u) ; /i >D u ; ̂ * then f f c o n s ( v ) ; ju >£)"c° " A^ ; /a**,
where JV = |̂ . — 6,,\.

We shall use these derived functions in the next chapter to describe a whole
family of intensional equivalence relations. We shall also illustrate how they can
be used to prove intensional properties of simple programs in Chapter 4.



Chapter 3

Equivalence Relations

Equivalence relations on expressions and terms are central to our approach.
Operations on programs need meanings to transform and meanings to preserve,
(Talcott, 1985b and 1986), and the study of various notions of equivalence is sim-
ply a study of the various meanings. As we have mentioned before, we regard
verification of programs and derivation of programs as duals of one another. In
verification one proves that a given program meets or satisfies a certain specifica-
tion. In derivation one does the reverse — from specifications one derives programs
which accomplish the task. Often such specifications are just simple-minded or
well known programs that perform the required calculation or construction. When
this is the case, satisfying a specification or accomplishing a task can be formulated
and proved using these equivalence relations. Without exception these equivalence
relations are generated by equivalence relations on memory object descriptions.
There are two different types of equivalence relations one can define on memory
object descriptions and terms. First are the extensional ones, which are generated
by equivalence relations on memory objects and are thus really properties of the
function or transformation denoted by the expression. Second are the intensional
ones, which not only depend on value of the memory object description but how
the memory has been transformed in the process of evaluating it.

The latter class turns out to have a much more manageable theory than the
former. We give two examples of the former, namely isomorphism and Lisp equal-
ity, and one of the latter, namely strong isomorphism. It will become apparent
to the reader that strong isomorphism stands to destructive Lisp as Lisp equality
stands to pure Lisp; in fact we shall prove a theorem to that effect.

The chapter is organized as follows. In the first section we examine the exten-
sional relations and their properties, or lack of them. Then in the second section
we describe the basic properties of the intensional approach, concentrating, as we
have already mentioned, on strong isomorphism. In the third section we prove the
fundamental property of this relation, the Substitution Theorem. In the fourth
section we provide a wealth of syntactic manipulations that preserve strong isomor-
phism. For contrast, we also provide analogous principles for pure Lisp. Finally
we give a simple example of the use of the strong isomorphism relation.
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3.1. Isomorphism and Lisp Equality

In this section we describe two extensional equivalence relations, Lisp equal-
ity and isomorphism. Both of these are equivalence relations on memory objects,
memory object descriptions and expressions, and are generated in a uniform fash-
ion from their behavior on memory objects. Thus we describe in general how to
extend an equivalence relation on memory objects to one that includes memory
object descriptions and expressions, consequently we need only define Lisp equality
and isomorphism on memory objects.

Supposing ~ is an equivalence relation on memory objects, we extend ~ to
memory object descriptions and expressions in the following fashion.

1. Memory object descriptions: Two memory object descriptions eo ;^o and
e\ ; ̂ i are said to be ~-related, again written eo ; fio ~ z\ ; ^<i, iff either they
both fail to denote or else they denote ~-related memory objects.

2. Expressions: Two expressions e0(x) and ei(x) are ~-related, e0(x) ~ e^x),
iff V v ; /i € Maexp we have that e0(v) ; /z ~ ei(v) ; /*.

3. Subdomains: By 1 and 2, expressions and terms are ~-related iff whenever
they denote they denote ~-related objects. We also say that two expressions
eo(x) and ei(x) are ~-related on a subdomain, X, of Maexp, written

e0(x) ~ ei(x) on X,

iff (Vv ; /x 6 X) (e 0 (w) ;^~ei (v) ;p) .

These extensional relations are useful when one is specifying and proving
properties of programs viewed as functions; we shall give some examples of such
shortly. For the reader whose thirst is not quenched, (Mason and Talcott, 1985)
contains many more examples than we shall present here. The actual algebraic
definition of these relations on memory objects uses the tree function (v ; fj,) as-
sociated with v ; //. We say memory objects v0 ; ̂ o and v\ ; n\ are isomorphic,
written

WO;A*O = VI;A*I,
if and only if their respective boxes and pointers diagrams are the same. In other
words they are graph theoretically isomorphic via a map which preserves atomic
values. This is stated precisely in the following.

Definition: If [v0,..., v n ] ; n, [v%,..., u*]; n* 6 M^t^ we say [u0 , . . . , v n ] ; p is
isomorphic to [uj, . . . , v*]; p*, written

bo, • • • , vn]; n = bo > • • • > vn]; /A
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if there is a bijection h : V — > V which is the identity on A , maps C — » C and is
such that

h o ( V i ; f i ) = (u? ;n*)

as partial functions, for every i G n + 1. Here o denotes function composition.

The fact that isomorphism between terms can be axiomatized is expressed by
the following result, which is proved in Chapter 5.

Theorem: (Effectiveness of =) There is a decision procedure which deter-
mines whether or not two primitive terms are isomorphic.

Remark: This theorem does not hold for arbitrary expressions, simply because

holds iff $ is total, where i? is any defined function.

Two memory objects VQ ; ̂ o and v^ ; n\ are said to be Lisp equal iff they have
exactly the same car-cdr chains, and whenever one chain ends in an atom in one
it ends in the same atom in the other. This is formulated precisely by:

Definition: We say VQ ', Ho and v\ ; n\ are Lisp equal, written

iff

• (VQ ; fj,0) and (vj ; pi) have the same domains

and

• («o ; ^o)<r = a iff (vi ; m)a = a, for a e *(«;Ml), a G ft.

Finally we say [VQ, . • • , vn] ; /u = [v£, . . . , v*] ; fi* if for each 0 < i < n we have
that Vi ; n = v* ;/**.

An important point to observe is that S-expression memory operations pre-
serve isomorphism. For example,

This is certainly not true for Lisp equality. Note that isomorphism and Lisp
equality also differ in that

A "i ; A« = "* ; /** -* [»o,...,w»];/*s[»J,...,<];/i*
0<t<n
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while
f\ Vi ; p, ̂  v* ; fi* -^ [v0,.-.,«„] ; / i=K,.. . ,<]; M*-

0<»<n

The former unlike the latter does not take structure sharing into account.

Two examples: The following are simple examples of these two relations on
primitive terms.

1. cons(cons(T,T), c07w(T,T)) = let{x-«- co7w(T,T)} cons(x,x). The values of
these two expressions are represented in figure 9.

TJR A A
T T

Figure 9. Example 1.

Note that we clearly have

co7is(corw(T,T), cons(T,T)) ^ let{a; -<- coras(T,T)} cons(x,x}.

2. if(o<om(x),T, rplacd(rplaca(x,T:),'I)) = if(aiom(z),T, co7w(T,T)).

Note these examples show that CQ ~ ei does not imply that e(x, eg) ~ e(S, ej)
when ~ is either = or = . In the case of the first example e(y) = rplaca(car(y), NIL)
suffices and in the second case e ( x , y ) = rplaca(y,x) is sufficient. Thus we do not
have Leibniz's Law for these two relations. Consequently to prove properties of
expressions using these two relations one must explicitly carry the memory around,
dissecting it when necessary (i.e. hand simulation + induction). Perfect examples
of this, and the disadvantages thereof, can be found in (Mason and Talcott, 1985).
Notice that v» ;//o = i>i ;//i means that VQ ;/Uo and v\ ;pi print the same (for typical
Lisp printing algorithms). As we have already mentioned we have the following
simple result:
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Proposition:

1. = and = are both equivalence relations, on memory objects, memory object
descriptions and expressions.

2. If VQ ; jUo — vi ; /ij then VQ ; /ZQ = vj ; n\. The converse is false.

3. If D is a definition in either yseip> Mpure+ or Mpure and $ is a function de-
fined in D then the partial function determined by this definition preserves
isomorphism. By this we mean that if [UQ, . . . , vn] ; p, = [uj , . . . , u*] ; /j,* then
$(i>o, • • • , vn) ; A4 — ^(uo > • • • > un) > M* whenever either (equivalently both) de-
note.

The third clause in this proposition would be false if we did not abide by
our convention that expressions do not contain cells. These properties in a sense
characterize isomorphism. It is the weakest equivalence relation generated from
an equivalence relation on memory objects that satisfies this proposition. For
consider the following result, the proof of which is left to the reader.

Theorem: Suppose that ~ is an equivalence relation on memory objects, mem-
ory object descriptions and expressions such that

0. eo(vo); no ~ ei(t>o) ; /^o implies that either both sides fail to denote, or else
they denote memory objects which are ~-related.

1. (Vu ; fj, 6 M,exP)(eo(t>) ; p, ~ ei(u); p) <—> e0(z) ~ ei(x).

2. (Va0 ,aj 6 A) ((a0 ; A<o ~ «i ;/*i) -*• (a0 = ai)).

3. The relation ~ satisfies a very weak Leibniz's Law

(Ve0(x),ei(x) € Msexp)(Vv0 ;^o,«i ; Hi € MSeiP)

vo ; jUo ~ wi ; A«i A e0(i) ~ ei(x) -»• e0(«o); Mo ~ ei(ui) ; ̂ !.

Then
e0 ~ ej -> e0 = ej.

Actually clause 2 in this theorem is not necessary (hint: use the partial nature
of car to distinguish between atoms and cells, if to distinguish NIL from all other
atoms and, finally, eq to distinguish distinct atoms). In (Mason and Talcott, 1985)
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it is shown that Lisp equality agrees with the usual notion on Mwf. Consider the
following well known Mpure program

equal(n,v) <—

if (or(a<om(u), aiom(v)),

atom:eq(u,v),

and(equal(car(u), car(v)),

equal(cdr(\i), cdr(v)))).

Equality Theorem: equal is a total function from M^ to Mwf, having values
amongst NIL, T. Further, if VQ ; fi, vi ; \i. 6 Mwf then the following are equivalent:

1. equal(vo,vi); fi = T; ft

2. V0 • p. = Vi ; fj,

3. v0 = vi or else vo,i>i G C and car(v0);^ = car(vi);fi A c<fr(wo);// = cdr(vi);n.

The proof is found below. Note that = cannot agree with equal on the whole
of Msexp because the simple recursive program will fail to terminate on many, but
not all, cyclic structures. We should also point out that more model theoretic
definitions of these two equivalence relations are possible, but we shall not do this
just yet. For V Q , W I 6 V we say VQ = vi iff either VQ and v\ £ C or else VQ — v\.
Using this we have the following simple pointwise characterization of =.

Proposition : The following are equivalent

1. v0-fi0=vi; m

2- ^o^o) = S(VI;PI) = 7 and (Ver 6 7) ((u0 ; no}* = (vi ; pi)*).

Notice that this together with simple properties of the derived tree function implies

Proposition : If CQ ; n and c\ ; ̂  € M3exp then the following are equivalent

1. c0 ; ft = ci •/j,

2. (c0 ; f t ) i ; ft = (ci ; f i ) i ; n for i € 2.

In other words two S-expressions are Lisp equal iff their cars and cdrs are. The
proofs of these two propositions are trivial.

Proof of Equality theorem: We prove that 1 is equivalent to 2, the rest then
follows easily from the preceding propositions. This is done by induction on

r(u0,i>i ;**) = |Celk^(w0)| x \Cetts^
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Base case: r(u0, «i ; ft) = 0. In this case v; € A for at least one i £ 2, and so

i) ; A« >• atom: eq(v0, vi) ; £*.

Since we have that atom: eq(vo , v\ ) ; fj, ~^> T ; /LI iff VQ = v\ , since both are in A , and
VQ ', \i = vi ; fj, iff WQ = Vi the theorem is true in this case.

Induction step: Suppose r(vo,«i ; fi) > 0 and that the theorem is true for any
«2> vs ; jUo G MU>/ of less rank. Thus VQ and i»i € C and

If we let Uia = ju(ui)io and VM = A«(vi)ii> ^or « 6 2 then we have

equal(v0,vi) ; fj. >

Now since Vi £ M w/ we have that r(w0a, «ia ; /^), »~(vod, Vid ; //) < r(v0 , vi ; fi}. There
are two cases to consider.

Case 1: If VQ ; /j, = Vi ; fj, then by the previous proposition, vga ', H = via ; n and
vod ; n = vid ; (J,. So in this case

equal(vo,vi);n > and( T, equal(cdr(v0),cdr(v1)')) ;fi > e5ua/(uod,uid) ; P > T ; p.

Case 2: If DO ;/^ ^ ^i ;/L« then, again by the previous proposition, either voa ;p ^ Via ;n
or v0d ; V ̂  vi<j ; A*. Suppose v0o ; ̂  ̂  VIB ; ̂  then

equal(v0,vi) ; /z > and(NIL, equal(cdr(v0),cdr(vi))) ; ̂ .

However, if voa ', p = fio ! /^, then

i) ! /^ > egMa/(cdr(v0),cc?r(«;i)) ; ju » NIL ; ̂ .

^Theorem

One other remark is that the above proof can easily be modified to show that
the more efficient version of equal given below also satisfies this theorem.

equal(u,v) <—

if(eg(u,v),T,if(or(a<om(u), (rfom(v)),

NIL,

and(eguoi(cor(u), car(v)),

equal(cdr(n),
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The following result is slightly stronger than the corresponding result for pure
Lisp; this is because in the following we must take structure sharing and cyclicity
into account. It will be proved in Chapter 5.

Theorem: (Effectiveness of =) There is a decision procedure which deter-
mines whether or not two primitive terms are Lisp equal.

As in the case of isomorphism this result does not hold for expressions. The
following simple result is used in the proof of the effectiveness theorem. It provides
a simple minded way of determining whether or not two objects are Lisp equal.

Proposition: For Vi ; m 6 Msexp, i G 2 the following are equivalent:

2. There is a a 6 T with the following two properties. Firstly,

M < |CellsMo(wo)| >

Secondly, either exactly one of (VQ ; ̂ o)<r and (vi ; /ii)<r is an atom or else they
are both atoms and they are distinct.

Proof: Clearly 2 implies 1, hence it suffices to prove the other implication.
Suppose that VQ ; HQ ^ Vi ; Hi and that <r £ T is a car-cdr chain of least length
such that either exactly one of (VQ ; /^o)<r and (DI ; Hi)a is an atom or else they are
both distinct atoms. Furthermore suppose that

k = \a\ > |Cells^0(u0)| x \Ce\\s

Then let <TO> &i , • • • > o"k be the list of all the initial segments of a in such an order
that |<7;| = i. Now for j < k we have that

x

Consequently by a simple counting argument we have that 3j0 < ji < k such that

rco ci i _ r o i i
lcjo'cjoJ ~ lcji'cjJ-

As a result we have, by putting a = <TJO *a* *er** where \cr*\ > 0 and a^ = <TJO *a*,
that

(vi,/i,-VJO*<r" = (vi ; m)f,

for i 6 2 thus contradicting our choice of <r. Dproposition
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3.2. Strong Isomorphism

These extensional relations are not strong enough for many purposes. For
example in program transformations and the like one is not just concerned with
the value of an expression but also with the effect it has on memory. It is also
desirable to have a relation between expressions which satisfies Leibniz's Law,
allowing syntactical manipulations in verifications and derivations. For this we
define the stronger notion of two terms eo(x) and ej(x) being strongly isomorphic,
written

e0(x) cz e^x),

which is true if they are not only isomorphic but also they make, up to this
isomorphism and the production of garbage, exactly the same modifications to the
memory they are evaluated in. By garbage we mean cells constructed in the process
of evaluation that are not accessible from either the result or the, possibly modified,
arguments. This entails that the isomorphism must map newly created cells to
newly created cells and be the identity on old ones. The relation is then extended
to expressions in the same way as in the extensional case. For example neither of
the two examples of isomorphic and Lisp equal expressions given previously are
strongly isomorphic. This relation is used in specifying and constructing program
transformations and we shall define it and study its elementary properties in this
and subsequent sections.

Definition: Two memory object descriptions eo(v); fi and ej(u) ; ft are said to
be strongly isomorphic, written

e0(v) ; n ~ ei(v) ; n,

iff either they both fail to denote or else they both denote, and for Wi ; m with

et(v); n » Wi; m

for i € 2, there is a bijection
h : V-> V

which is the identity on
A ® Cells^u)

and maps
C-»C

so that the following two properties hold:

• WQ ; fj,o = w\ ; Hi via h.

(w); no = Cells^(v); fj,i via h.
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Remarks:

1. In the second condition we are regarding Cells/i(u) as a sequence, ordered in
the left first spanning tree.

2. It follows from the second condition, by a simple pasting argument and the
fact that HQ must agree with fj. on 6^ — Cells^(f;), that we actually have

6ft ; /^o — 8p ; /^i via such an h.

Definition: Two expressions CQ(X) and e\(x) are said to be strongly isomorphic,
written

e0(z)~ ei(z),

iff (Vu ; /z € Maetp) (e0(v) ; /u ~ ei(u) ; ju).

Exercises: The following examples of properties of the memory operations and
the basic control primitives are simple instructive exercises. We shall examine
more properties of strong isomorphism in the penultimate section of this chapter.

0. seq(rplaca(x,yo),rplaca(x,yi)) ~ rplaca(x,y\), and similarly with rplacd.

1. seq(rplaca(x,y),x) £i rplaca(x,y), similarly for rplacd.

2. car (cons ( x , y ) ) ~ z, similarly for cdr.

3. rplaca(cons(z,y),x) ^ cons(x,y), similarly for rplacd.

4. car(rplaca(x,y)) ~ seq(rplaca(x, t/),y), and similarly for rplacd.

5. rplaca(x, car(x)) ~ x when a; € C, and again we have an analogous version
involving rplacd and cdr.

A simple example of a transformation which preserves strong isomorphism is
that of unfolding, defined in 2.2.6:

Unfolding Theorem: For any expression e(x), e(x) ~ eM(ic).

Fact: ~ is an equivalence relation on both memory object descriptions and
expressions.

Theorem: (Effectiveness of ~) There is a decision procedure which deter-
mines whether or not two terms are strongly isomorphic.

Remarks: The theorem is proved in Chapter 5. Yet again the theorem does
not hold for arbitrary expressions, simply because

holds iff i? is total, where i9 is any purely defined function.
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The main motivation for studying this relation is given by the following the-
orem. It and its corollaries describe fundamental syntactic manipulations that
preserve strong isomorphism. Later we shall show that it is the smallest relation
satisfying this theorem.

Substitution Theorem: If e°body(x,y) ~ e\ody(x,y), |x| = k + 1 and e°,(y) ~
e}(y), for 0 < i < k then

Remarks: Notice that while eq(x,x) ~ T we have eq(cons(y,y),cons(y,y)) ~
NIL which is why we have formulated the theorem in the above fashion. The
following corollaries follow with a minimum of effort and are left as exercises.

Corollary 1: (Sequencing theorem) If ej(x) ~ ej(x), for 0 < i < k then

Proof: Use the fact that

seq(e0 ,ei,.. . ,en) ~ Iet{x0 -e e0,zi x-ei, . . . ,xn -*• en}xn.

dCorollary 1

Corollary 2: (Composition theorem) If e°(S) ~ e}(x), for 0 < i < k and
is either an n-ary memory operation or an n-ary function symbol then

Proof: Use the unfolding theorem. Dcoroiiary 2

Corollary 3: (Branching theorem) If e?(x) ~ e}(x), for 0 < i < 3 then

Proof: Show that if(x,e0,y) ^ if(x,ej,y) and if(x,y,e0) ~ if(x,y, ei). Then
use the following two facts:

if(e0, et , e2) ~ Iet{x0 -«- e0}if (x0, ej, e2),

dCorollary 3
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The most useful consequence of the Substitution Theorem is Leibniz's Law;
replacing a subexpression of an expression by a strongly isomorphic one preserves
strong isomorphism:

Theorem: (Leibniz's Law) Supposing ei(x),e(x,y) are expressions, i e 2,
then,

e0(x) ~ ei(z) -* e(z,e0(z)) ~ e(x,ei(x)).

Remark: Clearly the Substitution Theorem is implied by Leibniz's Law. They
are actually equivalent as the following proof reveals.

Proof: We begin by proving two special cases as lemmas. The statement of the
first lemma requires the following:

Definition: A variable z, that occurs only once in an expression e(z), is said
to be an immediate subexpression of e(z) iff the only proper subexpression of e(z)
in which z occurs is z itself.

Lemma 1: Supposing e,-(jr), e(x, y) are expressions, i £ 2, and the only occur-
rence of y is as an immediate subexpression of e(x, y). Then

e0(z) ̂  ei(z) -> e(z,e0(z)) ~ e(x,ei(x)).

Proof of Lemma 1: This is an immediate consequence of the Substitution
Theorem and its corollaries Ptemma i.

Lemma 2: Supposing et(x), e(x, y) are expressions, i € 2, and y occurs exactly
once in e(x,y). Then

e0(x)~ei(x) -» e(x,e0(x))~e(x,ei(x)).

Proof of Lemma 2: Assume the hypothesis of the lemma, then for some n G N
there is a sequence

e (X,ZQ), e (x,zi), e (x,z2), e3(x,z3), ...,en(x,zn)

such that

1. Zi occurs only once in e'(x, Zi) and that occurrence is as an immediate subex-
pression, and

2. e(x, y) = e°(x, e\x, e2(x, e3(x, e\..., e"(x, y)))...))).

Now by lemma 1 we have that
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Using this as well as Lemma 1 again gives

en-1(x,en(x,e0(x))) * e-1^, en(*,Cl(*)))•

Thus n — 1 more applications of Lemma 1 will show that

e°(x, e^x, e2(z, e3(z, e4(..., e"(x, e0(x))) - . . ) ))

is strongly isomorphic to

e°(x, e\x, e\x, C
3(x, e4(..., e»(x, ei(x))) ...))),

and, by 2 above, this is just

e(x,e0(z)) ~ e(z,ei(x)).

DLemma 2

Now to prove the general case assume that y occurs exactly m times in e(x, y)
and choose

Z i , Z 2 , . . . ,Zm

to be distinct variables that do not occur in either e(x,y),eo(x) or ei(x). Let
e*(x, 0) be the expression obtained from e(x, y) by replacing the zth occurrence of
y by ^j for each i, 0 < i < m. Thus one application of Lemma 1 shows that

e*(x,eo(x) ,Z2,--- ,Zm) — e*(x,e1(x),Z2, • • • ,2m)-

A second application shows that

e*(x, zi, e0(x), 23, • • • , 2m) ̂  e*(x, 0i, ei(x), z3 , . . . , zm).

Now applying Lemma 1 to the right hand side of this last equation gives

e*(z,e0(z),ei(z),z3,...,zm) ~ e*(x,ei(x),ei(x),z3)... ,zm).

And applying it to the left hand side of the equation before it gives

e*(a;,e0(x),eo(a;),Z3,--.,zm) ~ e*(x,e0(x),ei(x),Z3,. . . , zm).

Putting these two together gives

e*(x,eo(x),eo(a:),Z3,...,zTO) ~ e*(x,ei(x),ei(x),z3 , . . . , zm).
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Continuing this line of reasoning eventually gives

This is the same as saying

Qrheorem

The following surprising connection between isomorphism and strong iso-
morphism falls out of the proof of the effectiveness theorems. It states that if
Gi(x), i € 2 are two primitive terms which are isomorphic and also have the prop-
erty that they can take on arbitrarily large values (by this it is meant that the
number of cells accessible from their value can be arbitrarily large) then the ex-
pressions are in fact strongly isomorphic on a large definable subset of Msexp; this
definable subset also has the property that the values e,-(x) take on its complement
are bounded in size. Thus we can conclude, modulo when the e,-(x) take on values
smaller than a certain size, that

e0(x) ~ ei(x).

Although the theorem has very little practical import, it does show how surpris-
ingly close are isomorphism and strong isomorphism. In contrast Lisp equality
and isomorphism are miles apart, as the preceding section indicated. To make the
statement of the theorem readable we first give a definition.

Definition: If e(x) is an expression we say it is bounded iff (3n 6 N)(Vu ; fj, 6
MUzpXVv* ; n" e Maezp) we have

(e(v) ; /*>»•;/)-» |CelIsM.(t;*)| < n.

e(x) is said to be unbounded iff it is not bounded, or in symbols iff(Vn € N)(3u;ju 6
Msexp)(3v* ; n* 6 M s e x p ) such that

(e(v) ; n > v* ; //*) A (|CelIs^(i;*)| > n).

The theorem indicated above is stated precisely as follows, it is proved in chapter
5.

Theorem: (Unbounded Isomorphism Theorem) If e,(x),z 6 2 are primi-
tive terms such that

e0(x) £ ei(x)
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and the ei(x) are unbounded, then there is a Mpure+ term 6(x) which is total on
Msexp i does not alter or enlarge the memory it is evaluated in, takes only the
values T or NIL, and is such that

1. e0(x) ^ ei(z) on {v ; p \ 6(v) ; p > T ; n}

2. ei(x) is bounded on {v ; fj, \ 9(v) ; n > NIL ; [J,}

Remarks:

• Note that the conclusion 1. can be stated simply as

,e0(z),T) ~ if(0(*),ei(x),T)

Conclusion 2. can also be simply stated as

if(0(x),T, Ci(x)) is bounded.

Also note that as a consequence we also have that 0(x) evaluates to the value
T for arbitrarily large arguments, or in symbols

(Vn e N)(3w ; p. € Maexp)(8(v) ; // > T ; (j.) A (|Cells^(«)| > n).

Finally, it also falls out of the proof that on

{v ; ft \ e(v) ; n > NIL ; /i}

the possible values of ej(i) are bounded by

_ Max,-€2{r(e,-(x))}_

Another corollary of the proof of the effectiveness theorems is the following
criterion for a term to be unbounded

Corollary: If e(x) is a term and for some v ; p we have that e(v) ; fj, ^> v* ; ju*
with

|CelV(t;*)| > 2r(e(Z)) + »•(«(*))•

then e(x) is unbounded.

It is probably an appropriate time to prove the following property of strong
isomorphism: it is the weakest relation extending Lisp equality that has a Substi-
tution Theorem. And as we have already pointed out, the Substitution Theorem
is an equivalent form of Leibniz's Law:
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Theorem: Suppose that ~ is an equivalence relation on memory object de-
scriptions and expressions such that:

0. (ViJ ; n e M3exp)(e0(v) ; p ~ e^(v) ; //

1. e0(v) ; n ~ ei(v) ; p. implies that eQ(v) ; fj, = ei(v) ; ft.

2. If eo(x),ei(x),e(x,y) are expressions then

Then CQ ~ e\ — > CQ ^ ei .

Remarks:

1. Just as in the case for = and = 1 can be replaced by the assertion that
CQ ; n ~ ei ; fj, implies that either they both denote or else they both fail to
denote.

2. Since the Substitution Theorem is equivalent to Leibniz's Law, we can replace
2 by the assertion that ~ satisfies the Substitution Theorem. It is this modified
version that we prove.

Before we prove this theorem we shall give one thousand and twenty three
distinct examples of decidable equivalence relations, other than ~, that satisfy its
hypothesis.

Definition: Let 0 C <0sexp and define the equivalence relation ~© as follows:

if and only if the following two conditions hold:

1. e 0 (u ) ; / /~e i ( t j ) ; / i

2. For each 9 £ 0 we have that e^(v) ; // ~ e{6(v) ; p where ete is the derived
expression defined, or at least described, in Chapter 2.

We then define CQ(X) ~© ei(x) in the usual way. Note that since we can
effectively go from e to e$9 the decidability of ~e follows from that of ~ . The
following is a simple exercise.

Proposition: ~© satisfies the hypothesis of the preceding theorem.

Proof of Theorem: Suppose that eo(x) ~ ei(s) and that ~ satisfies the
hypothesis of the theorem. Given any v ; /j, € Msexp, we shall show two things.

A. 1. and 2. actually imply e0(v) ; ft = &i(v) ; fj,,

and
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B. A. together with 2. implies e0(v) ; fJ, ~ e\(v) ; ̂ ,

The theorem then follows from B. together with 0, since the choice of v ; ̂
was arbitrary.

Proof of A: Without loss of generality we may assume that

e i (u ) ; / z>u>i ;^ j , i 6 2.

By 1 we have that
w0 ;n0 = wi ;ni.

Now suppose that
wQ ; no ^ it>i ; //i .

This implies, again without loss of generality, that there are <7i,cr2 € <5(Wo;fi0) suc^
that

3. (w0 ; /ioVo = (u>o 5 A'O)«TI € C,

and

4. (w>i ; ni)aa ^ (twi ; /ii)<7, , both are cells of course.

Now let #o and #1 be the compositions of cars and cdrs that corresponds to
the paths <TO and<Ti, respectively. Explicitly di(wj)\fi ^> (wj\^ij)^(;y,. Put et,0dy(y)
to be the expression

Iet{x0 -<-^o(y),zi -<-^i(y)}seq(rpkca(a;o,ao),rp/acffi(a;i,ai

Here ao and ai are any distinct atoms not in Atoms,j0(u>o) =
Thus by the substitution theorem we have that

In particular

and consequently

Letting et0dy(wi) ; //; ^> Ci ; fi* it is easily seen that

5. (c0 ; HQ)OO = «i = (c0 ; MO)OI,

but

6. (ci ; ^1)00 = o-o and (cj ; //i)oi = cti. This contradicts the fact that GO ; /J,Q
ci ; /i*. Thus w0; fj,0 = wi ;ni. DA.
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Proof of B: Now for each Vi in v let {#•};£/,• be a finite collection of composi-
tions of car and cdr with the following properties:

7. For any c £ Cells^(uj) there is a j 6 /,• such that ^(uj) ; n > c ; \i.

and

8- (% (vi) ! A* denotes for every j e Ij.

Now put

cj(i) = cons($(xi), cons(9}(xi\ . . . cons (^'^(i,-), NIL))) . . .))

and
ebody(y, z) = cons(y0, cons(yi,. . . cons(y\i\_1, c<ms(z,NIL))) . . .))

The Substitution Theorem and part A then allows us to conclude that

Iet{y0 -t- ej, . . . j/|s|_! -«- e^|_!, z -(- e0}e6odj/(y, z)

is isomorphic to

Iet{y0 -«- ej, . . . y|j|_j -«- e*^, z x- eijej^y, z).

Evaluating these two expressions at v ; /J, and interpreting this last condition forces
eo(v) ; fJ, ^ ei(v) ; p. OB. Drheorem

3.3. The Substitution Theorem

In this section we prove the Substitution Theorem, the statement of which we
repeat here for the convenience of the reader.

Substitution Theorem: If e°body(x,y) ^ el
body(x,y), \x\ = k + I and e?(y) ~

ej(y), for 0 < i < k then

We begin with a simple lemma, the proof of which we leave as an exercise.

Lemma: If e0(x) ~ &i(x), VQ ; HQ = Vi ; n\ via h and e{(vi) ; m > Wj ; tf for
i £ 2, then there is a bijection h*, which is the identity on A and maps C — > C,
such that

• h* = h on Cells j0 (So
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. Cell8Mo(eo) ; 1% = Cells^th) ; tf via fc*

Furthermore if iii £ £,,,. for z € 2 with the property that

u0 ; Mo — "i I Mi via

then we can add the following two requirements.

. h* = h on Cells/j0(u0)

. M0 ; Ho = MI ; ft* via /i*

Remark: Notice that the second part follows from the first and the simple
observation that if CQ(X) ~ e\(x) then these two expressions are also strongly
isomorphic:

cons(y0 , cons(yi ,... cons(ym , e0(z))) . . .))

cons(y0,cons(yi, . . . cons(ym,ei(x))) . . .)).

Proof of the Substitution Theorem: Assume the hypothesis of the theorem
and pick v ; /z £ Maexp. Without loss of generality we may assume that there are
memory objects

H ;Mibe2, o<;<*

such that

• e3
0(v) ; n > w3

0 ; ̂  for j 62

• ei(«) I l4-i > wi ! »i for j 6 2 and 0 < z' < fc

since the case when the memory object descriptions fail to denote is a simple
variation on the following argument. We now construct a sequence of functions

with the following properties, putting

j ( Cells^(u) for i = 0 and j € 2
1 D^ U CellsMi_ (u * [wi-iD for 1 < i < fc, j € 2.

0. ho is the identity on DQ

1. hi = hi-i on Dj_j, 0 < i < k.

2. w° ; p° = w;J ; //J via hi, for 0 < i < k.
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3. Dl ; ;u? ^ Dj ; /*J via ft,- for 0 < i < k.

We construct these functions by induction on i. In the case i = 0 the function
h0 is given to us by our assumption that e°Q(x) ~ e\(x). So supposing we have
constructed /ij_i we consider two cases, the first is when i < k and the second is
when i = k. In both cases we show how to construct hi.

Case 1: By the induction hypothesis we have that

w;/ i°_i £u;/4_! via fci_i.

So by the first part of the lemma we have that there is a function hi such that

4. hi = hi-\ on Cells^9 (v)

5. w? ; //? S «;? ; ̂  via &,-

6. Cells^Cw) ; v° = Cells ̂ (v) ; vl via A,-.

But furthermore we have that D^_j C 6 j and by the induction hypothesis,

[«?_,] * D?,! ; ̂ °_i = K-i] * Dj_j ; /zj.j via A^.

Thus by the second part of the lemma we can also require that

7. hi = hi-i on D?_j U CeIlsMo ^w^J

8. «;?_! ; 0? S wj.j ; ̂ J via /z;

9. D?_j ; nl = D.Li ; ̂ - via /«; for 0 < i < k.

Now putting 6, 8 and 9 together yields 3. Also 4 and 7 have 1 as a consequence.
Thus we are done in this case Dcase i.

Case 2: This case is almost identical. By the induction hypothesis we have
that

v * w° ; n°k_1 = v * w1 • /4-i via h^-i

where & = [w^, . . . , «4-il) an^L so by the first part of the lemma we have that
there is a function hk such that

10. hk = hk-i on Cells..o (t; * w°)
^k-l ^

11. wl;nl*wl;p\™hk

12. Cells^o (5*ii)0) ;^^Cells / ( i ( i ;*tD1) ;^ via hk.
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But furthermore we have that DJ._J C S > , and by the induction hypothesis

D*-i ; Pfc-i = Vl-i ; A-i via hM.

Thus by the second part of the lemma we can also require that

13. hk = hk-i on D£_!

14. D°_! ; £ * Di_! ; p\ via hk.

These again give the result. Dcase 2. dSubstitution Theorem

3.4. Axioms for ~

In this section we shall present a large collection of principles, which for want
of a better word, we shall call axioms . We make no claim as to their independence .
Nor, unfortunately, shall we claim completeness . The former because they are not
independent, the latter because they are not complete. In fact the difficulty of this
and related tasks is the reason for our model theoretic proofs of the effectiveness
theorems.

Although it is an implicit aim of this work to show that destructive Lisp
is no more complex or mathematically inelegant than pure Lisp, we shall begin
by producing the salt with which one must take this aim. We shall provide a
simple axiomatization of pure Lisp which the reader may compare to that in the
destructive case.

Firstly however we provide the reader with a perspective. We have divided
the axioms relating ~ into groups, depending upon the principal entity that the
property depends upon. This is a value judgment because, for example, the prop-
erties of the underlying data operations cannot be formulated without the help of
seq and sometimes even let. It should also be pointed out that even though seq
can be defined in terms of let and even in terms of the underlying data operations,
such an economical approach is somewhat harder to comprehend.

3.4.1. Axiomatizing Pure Lisp

Prior to our never-ending list of facts concerning destructive Lisp, we present
an axiomatization of pure Lisp. This equational theory consists of expressions
from

Opure = {atom, atom:eq, cons, car, cdr},
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being related by Lisp equality, =. The variables are restricted to Mw/. Thus when
we say that eo(a;) = &i(x) is true, we actually mean

e0(x) = ej(x) on M w f .

The reason we only include atom:eq rather than eq in pure Lisp is to retain Leib-
niz's Law; equals can be replaced by equals to obtain equals.

Leibniz's Law (\/e0(x),ei(x),e(x,y) e Mpure)(Vx € Maexp)

e0(z) = ei(z) -» e(x,e0(x)) = e(x,ei(x)).

We begin by eliminating the need to consider the control primitives seq, let
and if. It is here the difference between pure and destructive Lisp manifests itself.
While the principles for pure Lisp are essentially trivial (almost to the point of
demonstrating the redundancy of these primitives), those for destructive Lisp are
by no means so. Firstly we define

el <==$• 3x(e = x).

1. leto<i<n{2/! -<• e,-}e = e{j/,- -«- e,-}o<i<n, where the R.H.S. denotes the expres-
sion obtained by simultaneously replacing free occurences of j/i by ej in e,
provided that e^J. for 0 < i < n.

2. "'(letfKKnjj/i -+ei}e)l whenever there is an 0 < i < n such that -'(e,-J.).

3. seq(e0, . . . , en) = en, as long as e0|, . . . en_i J.

4. ->(seq(eo, . . . ,en)J.), whenever there is an 0 < i < n such that -i(e,-J.).

5. -i(if(e0,ei,e2)|), whenever -i(e0|).

6. if (60,61,62) = 61 whenever eoj. and CQ ^ NIL.

7. if(eo,ej,e2) = e2 whenever eo = NIL.

The axioms for the underlying data operations are then easily enumerated.
They are almost complete; the incompleteness results simply from our silence on
the number of atoms.

0. atom:eq(T, NIL) = NIL.

1. atom:eq(eo,ei) = atom:eq(ei,eo).

2. atom:eq(x, y) = T if and only if atom(x) = T = atom(y) and x = y.

3. atom:eq(x,y) = T or atom:eq(x,y) = NIL.
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4. aiom(T) = T and atom(NIL) = T.

5. atom(x) = T iff x <E A and atam(x) = NIL iff x 6 C.

6. afom(cons(x,y)) = NIL.

1. car(cons(x,y)) = x.

8. cdr(cons(x,y)) = y.

9. If atom(x) = NIL then cons(car(x), cdr(x)} = x.

10. cons(x,y) ^ <r(cons(x,y)) for any non-trivial composition a of cars and cdrs.

11. aiom(x) = T iff car(z) = x.

12. aiom(a;) = T iff cdr(x) = x.

3.4.2. The Principal Subexpression Theorem

We begin our study of destructive Lisp with some definitions that will be used
in expressing certain properties. The two main notions to be defined are that of
a gentle expression, being one that does not alter any memory it is evaluated in,
and that of a expression being a principal subexpression of a given expression.
By the latter is meant a subexpression which must be evaluated first, prior to
evaluating the whole. Both these notions will be used heavily in our formulation
of the axioms.

Definition: We will call a term or expression e(x), in E, gentle iff for every
i G |x|, seq(e(x),x|i) ~ xj.;. The reason we call them gentle is because of their
failure to alter memory.

The first and somewhat obvious result is the following, the proof of which we
leave as an exercise.

Proposition: The following are equivalent.

1. e(x) is gentle.

2. seq(e(x),T)~T.

Before we begin our endurance test of truth we make one more definition.

Definition: We say that the variable z is principal in the expression e if and
only if one of the following holds:

Q. e = z.

1. e = i 9 ( e Q , . . . , e* ,CQ, . . . , em) and firstly z is principal in CQ, secondly z does
not occur in e< for any 0 < i < m, and finally e* 6 V U (X — {z}).
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2. e = if(eo,e1,e2) and either z occurs principally in e0 and does not occur in
either e\ or e2, or else e0 € VU(X- {z}) and 2 is principal in both ei and e2,

3. e = seq(ej,... e* , e0 , . . . em) and firstly z is principal in e0, secondly z does
not occur in e, for any 0 < i < m, and finally e* £ VU(X-{z}), for 0 < z < n.

4. let {j-o -«- eS, . . . a-n -«- e^, zn+i -e ei , . . . , xn+m •+ em}e and firstly z is principal
in ei, secondly z does not occur in e or e, for any 0 < i < m, thirdly for
0 < »' < n f* € V U (X - {2}), and finally z is distinct from the x.

5. let{.r() -<-c0, r« -<-e,,}e, e, 6 V U ( X - {z}) and z is principal in e.

The idea behind this definition is the following: If z is principal in e(z) then
I lie first expression to be evaluated in e(e0) is eg. We call eo in such a situation a
principal subexpression of e. As a result we have the following theorem, the proof
of which is a simple induction on the rank of e.

Principal Subexpression Theorem: If z is principal in e(z) then

1. seq(e0,...,en_i,e(en)) ~ e(seq(e0)... ,en_i, en)),

9

3. let{xi -«-e i , . . . ,a:n -+ en,z + eQ}e(z) ~ let{xi -«- e1; . . . a;n y- en}e(e0), pro-
vided that eo contains no free variables from x.

4. e(if(e0,ei,e2)) ^ if(e0,e(ei),e(e2)).

5. If let{z-(- eo}e(z) ~ let{z-eeo}seq(e(2:),z) then

-*- e(e0)}seq(ei, . . .)•

3.4.3. The Basics

As we have already said, the main motivation for studying ~ is given by the
Substitution Theorem. It and its corollaries describe fundamental syntactic manip-
ulations that preserve strong isomorphism. It is these properties that suggest that
the program we are about to undertake will not be ridiculously complicated. In
contrast, even though = is a decidable relation, the non-existence of nice principles
regarding it is almost certain, simply because of the non-existence of such syntactic
manipulations. Returning to basic manipulations, which we repeat here for the
convenience of the reader, if e°tody(x,y) ~ elody(x,y), |x| = k + 1, e°(y) ~ ej(y),
for 0 < i < k and !? is either an fc-ary memory operation or an fc-ary function
symbol then:

Substitution :
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Sequencing : seq0<i<jt(e?(y)) ~ seq0<i<)t(ej(y)).

Composition : tf(e°(y), • • • , e^y)) * d(ej(y), . .

Branching : if (e°(y), e°(y), e°(y)) ^ if (ej(y), ej(y), cj(y)).

Unfolding : e(x) ~ e^(x).

Leibniz's Law: eo(x) ~ ei(z) — > e(z,eo(z)) ^ e(x,ei(x)).

3.4.4. The Data Operations

The properties of the data operations are quite simple to express and we ex-
pect the following list to be fairly close to being complete (we will point out places
where there is room for improvement). We begin by enumerating the properties
of rplaca and rplacd, necessitating heavy use of seq. The first two axioms simply
state that rplaca(x, y) and rplacd(x, y) both return the modified x.

0. seq(rp/oca(x,y),a;) ~ rplaca(x,y).

rf(s,y),a;) ~ rplacd(x,y).

The next two axioms describe the modifications made to x, and the two after
describe what isn't altered.

2. car(rplaca(x,y)) ~

3. cdr (rplacd (x,y)) ~ seq(rpZacd(z,y),y).

4. car(rplacd(x, y)) ~ let{z -<- car(x)}seq(rplacd(x, y), z).

5. cdr(rplaca(x,y)) ~ let{z -<- cdr(x)}seq(rpZaca(x,y),2).

Notice that in these last two the let is important since simply saying

car (rplacd (x,y)) c± seq(rpZac<Z(a;,y), cor(a;)),

for example, would not be enough. In fact this last equation follows from 0. using
the principal subexpression theorem. These last two can also be generalized so that
they imply that every other pointer in existing cells, other than the one modified,
remains the same. We shall not do this.

The next six axioms are cancellation axioms. The first two simply state
that modifying the same pointer in x successively is identical to carrying out the
single second modification. These properties are used very heavily when proving
properties of pointer reversing programs, as will be seen in Chapters 4 and 8. The
second two state simple relations between cons-'mg a new cell and modifying a
newly constructed one. The final two just express the fact that altering a pointer
so that it now points to what it did previously is no alteration.
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6. seq(rp/aca(x.yo), rplaca(x,yi)) ^ rplaca(x,yi).

7. s*<i(Tplacd(x,yo),rplacd(x,yi)) c± rplacd(x,yi).

S. rplaca(com(z,y),x) ~ coru(x,y).

9. r p l a c d ( c o n t ( x , z ) , y ) c± cons(x,y}.

10. rp/aeo(x, car(i)) ~ I when x € C.

11. rplacd(x, cdr(x)) ~ a- when T 6 C.

The next three properties of rplaca and rplacd are simple commutativity prop-
rrties, stating when the order of these destructive modifications can be changed
without any harm.

I" :: , . .1 ( ; • / > / , / , • , / ( . ; • „ , . ! • , ), r/i /<;. ,-<;.( TJ , .(•;, ), .r., ) ~ seq(?7)/arH.(.j '2, . i- : i). rplaal(.r0, .r, ) , . r . | ) .

Ki. seq(rp/aca(:r0,xi),rp/aco(i2,^3),^4) — seq(rplaca(x2, X3), rplaca(x0,Xi),xt),
if .r0 ^ .r2.

14. seq(rp/oc(/(x0,Xi), r p l a c d ( x 2 , x 3 ) , X 4 ) ~ seq(rpZacrf(a;2,a;3), rplacd(x0, X i ) , x t ) ,
if xo ^ x2.

The next two assert, in a rather subtle manner, that one cannot modify an
atom.

15.

16. aiom(rp/ac(i(eo,ei)) ~ seq(rpZacrf(e0, ej), NIL).

What remains now are simple properties of the remaining operations. The
first simply states that cons creates a cell, never an atom. The next two are simple
facts about the characteristic function of A , atom.

17. atom(cons(x,y)) ~ NIL.

IS. atom(x) ~ T if x £ A and atom(x) ~ NIL if x € C.

19. afom(T) ~ T and aiom(NIL) ~ T.

The following two properties relate the cell constructing operation, cons, with
the access operations, car and cdr. Note that cons(car(x), cdr(x)) ~ x is always
false, regardless of the nature of x.

20. car (cons ( x , y ) ) ~ x.

21. cdr(cons(x,y)) ~ y.

The next axiom states, again in a necessarily subtle way, that cons always
creates a new cell. The remaining axioms state simple properties of the identity,
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eq. There are obvious modifications of these axioms for the case of atom:eq. We
leave their statement to the reader's imagination.

22. eg(co7M(e0 ,ei),e2) ~ seq(e0 ,ei,e2 ,NIL).

23. 69(60,61) ~ eg(ei,e0) if the e, are gentle.

24. eq(x, y) ~ NIL if x ^ y.

25. eq(x,y) ~ T if x = y.

26. eg(T,NIL) ~ NIL.

27. atom(eq(e0,ei)) ~ seq(e0,ei,T).

3.4.5. Properties of seq

We now commence with the control structure, beginning with seq. The first
three properties are the simplest one can think of concerning the sequencing primi-
tive: a sequence of one expression is the same as the expression; a sequence within
a sequence can be flattened, i.e. nested seq removal; and thirdly, seq can be
defined in terms of let.

1. seq(e) ~ e

2. seq(e0,..., seq(en ... ero), ek,...) ~ seq(e0,..., e, en , . . . em, e f c , . . . )

3. seq(e0,ei,... ,en) ~ let{a;o -^-e0,xi -<-e i , . . . ,xn -+en}xn

The next six properties all stem from the fact that the value returned by the
sequence is the value of the last expression in the sequence. Consequently gentle
expressions, when they are defined, can be added and removed from anywhere
within the sequence other than the last. The five axioms subsequent to the first
allow one to replace an expression in a value-ignoring position by one or more
that have the same effect on memory. Note that in the last two of the six, the
hypothesis cannot be weakened to oiom(en) ~ seq(en, NIL) for reasons of validity.

4. seq(e0(y)..., en(y), e(y)) ~ e(y) if e,-(y) are total gentle terms, 0 < i < n.

5. seq(e0,..., cons(en, en+i),.. . , em) ~ seq(e0,..., en, en+i,..., em).

6. seq(e0,...,eg(en,en+i), . . . ,em) ~ seq(e0,... ,en ,en+i, . . . ,em).

7. seq(e0,...,o<om(en),...,em) ~ seq(e0,... ,en , . . . ,em).

8. If aiom(seq(e0,.. . ,en)) ~ seq(e0,... ,en ,NIL), then

seq(e0,..., car(en),..., em) ~ seq(e0,..., en , . . . , em).
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9. If a<om(seq(e0,...,en)) ~ seq(e0,... ,en,NIL), then

seq(e0,..., cdr(en),..., em) ~ seq(e0,..., en , . . . , em).

The final two properties concern somewhat different manipulations of seq.
The first describes when one can push a seq inside an expression. And the last
allows one to commute gentle expressions with one another, regardless of whether
they are defined.

10. If z is principal in e(z) then seq(e<),... , en_i,e(en)) ̂  e(seq(eo,... ,en_i,en)).

11. If en_i and en axe gentle then

seq(e0,..., en_i, en,..., ero) — seq(e0,..., en, e n_i , . . . , em).

A shortcoming in our axioms regarding seq is in their dealing with the problem
of commuting expressions. Our only relevant axiom was this last one. It is clear
that this is not exhaustive, but an elegant description of when such a principle is
valid has eluded us. One final axiom, which we include for interest rather than
anything else, demonstrates that seq is in fact definable without recourse to let.

12 seq(eo,..., en) is strongly isomorphic to

cdr(cdr(... cdr(car(cons(CQ, cons(ei,..., c<ms(en ,NIL))). . .)))

7i cdr s

3.4.6. Properties of if

The branching construct, if, and its properties are well understood, see for
example (Bloom and Tindell, 1983),(Guessarian and Meseguer, 1985) or Chapter
5, and so we shall not dwell upon them here.

1. if (NIL, e0, ei)~ a.

2. if(T,e0 ,ei)~e0 .

3. if(e0 ,ei,ei)~ seq(e0,ei)

4. Suppose that e$ ~ seq(eo,NIL) implies that 62 — e\ then if(60,61,62) —
if (e0, ei,e:j;).

5. Suppose that e0 ^ seq(e0,NIL) implies that ei ~ e\ then if(eo,e!,62) ~
if (e0,ej,e2).

6. Suppose that CQ c± seq(eo,NIL) then if(60,61,62) cz seq(eo,62).

7. Suppose that 60 ^ seq(eo,NIL) then if(60,61,62) ci seq(eo,ei).

8. i9(£o,if(eo,ei,e2),£i) ^ if(e0,»?(xo,ei,xi),»9(xo,e2,Si)).
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3.4.7. Properties of let

The lexically scoped variable binding operation, let, is by far the most dif-
ficult of the control primitives to describe axiomatically. Even though we shall
show it is possible in Chapter 5, we have but scratched the surface here. The first
property is a simple consequence of the lexical nature of let.

1. let{xo -4-eo}let{a:i -<- e\}e ~ let{a;o -*-eo,£i -<-ei}e, as long as x0 does not
occur free in e\.

The next three properties are the simplest forms of let elimination we have
found. They are by no means the end of the story. There are many other cases
when one can eliminate or introduce a let but we have not found any elegant
way of describing them. Basically there are only two reasons why a let cannot be
eliminated. The first is when it is used to obtain a pointer to an object about to
become inaccessible. For example

let{j/ -<- car(x)}seq(rplaca(x, 2),...).

The second is when it is used to obtain a pointer to the value of an expression e
that when evaluated twice produces distinct answers. For example

let{j/-<- cores(T,T)} cons(y,y).

Another example of when a let cannot be eliminated is illustrated by the following
fact. It states that, in a sense, all primitive terms have inverses. The obvious
version without the let is of course false.

Proposition: For any term e(x) there are terms 6i(x) in Mpure+ for 0 < z < n
and a term e~1(x,y) such that

Iet0<i<n{?/i-ee,-(a;)}seq(e(a;),e ( x , y ) } ~ T.

We would be delighted if someone produced an elegant characterization of when a
let can be eliminated. At the end of this section we give some other examples of
when a let can be eliminated. The list of properties of let continues as follows.

2. If the Xi do not occur in e, then the following two expressions are strongly
isomorphic

Iet{x0 -<-e0 l . . .zn-*-en ,yo -<-e j$ , . . . , ym -*-e*m}e

seq(e0,... en, let{«/0 -<- ej | , . . . , ym -«- e*m}e).
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3a. If z is principal in e(z) then

let{z •«- eQ}e(z) ~ e(e0).

3b. If z is principal in e(z) and e0 contains no free variables from x then

let{xi -«-ei , . . . ,a;n -<-en,z-<-eo}e(z) ~ let{zi -^-el, . . . xn -«- en}e(e0).

4. Iet{y0 -«• eo, . . . , X -<- 1>, . . . yn

The next axiom is more a property of function application than that of let,
but we include it here because of its importance and because it follows from the
axioms above.

5. 0(60,6!,..., en) ~let {zo + eo,zi -s- e1?. . . ,xn -+en}d(x).

The next two axioms pretty much speak for themselves; they turn out to
be very useful when proving properties of programs. They can, of course, be
generalized and the axiom following them is one such generalization.

6. let{x-<-e}seq(rip/aca(x,y),eo,. ..) c± let{a;-<- rp/<zca(e,y)}seq(e0, . . .).

7. let{x-<-e}seq(rpZaco(a;,y),eo,...) ^ let{z-<- rpkca(e,y)}seq(e0, . . .).

8. If let{x -<- e}eo(x) ~ let{x -^e}seq(eo(x),o;) and x is principal in eo(z) then

-<- e}seq(eo(x),ei,. . .) ~ let{x-<- e0(e)}seq(ei, . ..).

The last axiom gives a sufficient condition for commuting binding expressions.
It is clear that this condition is not necessary, but again an elegant description of
when such principles are valid has escaped us.

9. If en_j and en are gentle then

We finish off this section with some more complex cases of valid let-elimination
and introduction, which require some definitions. The first is that of an expres-
sion being a predicate; not only must it be gentle but it must also not enlarge the
domain of the memory which it is evaluated in.

Definition: An expression e(x) is said to be a predicate if for every memory
object v ; /j, if

e(u) ; n > v* ; /x*
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then

It is often said that a good programmer will only use predicates as test clauses
in if expressions, see for example page 29 of (Pitman, 1983). We sympathize with
this standpoint, and indeed that is why we have called them predicates. The
following proposition gives a simple necessary and sufficient for a primitive term to
be strongly isomorphic to a predicate, its proof requires the techniques developed
in Chapter 5.

Proposition: If e(x) is a gentle term and for every memory object description
v ; n we have that either e(v) ; fj, does not denote or else it either denotes an atom
or else a cell in //, then there is a predicate e*(x) such that

e(x) ~ e*(x).

The next definition is that of a variable, x, occurring in a stable position in an
expression, e(x). The definition is designed to make sure that the nature of x will
not be changed in the evaluation of e up to the point it appears in the expression.

Definition: An occurrence of a variable in an expression e is said to be stable
if no rplaca or rplacd is evaluated before that occurrence of x is evaluated. This
is defined formally as follows. Suppose e(z) is an expression in which the variable
z occurs freely exactly once and does not occur bound. Then we say z is stable in
e(z) if one of the following conditions holds.

0. e = z,

1. e = i?(eJ5, . . . , e* , e0, . . . , em), z is stable in e0 and seq(ej, . . . , e* ) is gentle.

2. e = if (CQ, ei, 62) and either z is stable in CQ or else eg is gentle and z is stable
in either e\ or 62,

3. e = seq(ej, . . . e* , eo, . . . em), z is stable in e0, and seq(ej, . . . , e* ) is gentle,

4. Iet{x0 x-ej;, . . .xn-<-e*,xn+1 -<-ei,. . . ,xn + m-<-em}e, z is stable in ei, and
seq(eS,...,e*) is gentle,

5. let{xo -*• CQ, • . . xn -<- en}e, z is stable in e, and seq(eo, . . . , en) is gentle.

An occurrence of a variable, x, that occurs more than once in e is said to
be stable at that occurrence if when we replace it by a new variable, z, in that
occurrence, then z occurs in a stable position in the so obtained expression. Note
for example that x is stable in the expression rplaca(x, x) because in our version of
Lisp we evaluate the arguments of a function call before carrying out the function
call. The final definition is that of a strict subexpression of an expression. The idea
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is simple, a strict subexpression of an expression is one which must be evaluated
in order to evaluate the whole expression.

Definition: The strict subexpressions of an expression e consist of the collection
g(e) defined inductively as follows:

({e} i f e e X U V ;
if e = if(eo,e!,e2)

if e = \ ^C° ' ' ' ' e™' .
) , . . . e m j

e} u Ui 0(eO u e(eb»dy) if e - Iet0<,<m{2/:

Using these three definitions we can state the following valid form of let-
elimination.

Proposition: Suppose that every occurrence of x is stable in e(x), x occurs at
least once in a strict position, and that eo is a predicate. Then

letjx -<- ea}e(x) ~ e(eo).

Furthermore we can alter the assumptions slightly to cover the case when eo
is not a predicate but is gentle.

Proposition: Suppose that x occurs only once in e(x) and that occurrence is
both stable and strict; also suppose that eo is a gentle expression. Then

let{x -<- e0}e(x) ~ e(e0).

In both of these simple cases we can drop the assumption concerning strictness
provided that the expression eo is total. Also the assumption that x can only occur
once in the second proposition can be weakened. This is because if, for example,

and x did not occur in eteat then we would only need to require that it occurs
at most once in both ethen and eejse. To make this explicit we make the following
definition of a variable occurring uniquely in an expression.

Definition: We say that the variable z is unique in the expression e if and only
if one of the following holds:

0. e = z,

1. e = $(ej,..., e*, eo,.. . , em) and firstly z is unique in eo, secondly z does not
occur in e,- for any 0 < i < m nor in e* for 0 < t < n
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2. e = if(60,61,62) and either z occurs uniquely in eo and does not occur in
either e.\ or 62, or else it does not occur in eo and if it occurs in either e\ or
62, then it occurs uniquely.

3. e = seq(ej,... e*, eo, . . . em) and firstly z is unique in e0, secondly z does not
occur in et for any 0 < i < m nor in e* for 0 < i < n.

4. Iet{s0 -<-6o, . . .xn -<-e*,xn+i -^-ej , . . . , xn+m -«-em}e and firstly z is unique
in 61, secondly z does not occur in e, e; for any 0 < i < m or in e* for
0 < i < n, and 2 is distinct from the x.

5. I&t{xo -t- eo, . . . xn -<- en}e, z does not occur in e,- for 0 < j < n, x is distinct
from the x and 2 is unique in e.

With this definition we can generalize the previous proposition to

Proposition: Suppose that x occurs uniquely in e(x) and every occurrence is
stable. Furthermore suppose that either there is a strict occurrence of x or else e0

is total. Also suppose that eo is a gentle expression. Then

let{x -<- e0}e(a;) ~ e(eo).

There are other issues concerning let elimination that we have not touched
upon here. The most important is when, from a point of view of efficiency, is it
better to introduce or eliminate a let. A discussion of some of the issues can be
found in (Steele, 1976) and (Steele, 1977a).

3.4.8. Call by Value and Domain axioms

These axioms again are somewhat self-evident and, yet again, probably not
exhaustive especially, once again, in the case of let. Note that because evaluating
expressions can alter the course of nature, these axioms are more complex than
their pure counterparts. We define ej. to mean

e $L cor(T).

1. Whenever there is an 0 < i < n such that -i(seq(e0,..., ei)|) we have

-.(Iet0<i<n{yi -<- e,-}e)J..

2. Whenever there is an 0 < i < n such that -i(seq(eo,..., ei)J,) we have

->(seq(eo,...,en)J,).
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3. -.(if (e0,ei,e2).|,), whenever ~-(e0i).

4. -i($(eo,... ,en)J.), whenever there is an 0 < i < n such that -i(seq(eo, • • • ,e ; )•!•)•

5. con5(x,y)J..

6. atom(x) ~ T implies that -<(car(x)l) and -i(c<fr(z)J,).

7. atom(x) ~ T implies that ->(rplaca(x,y)l) and ->(r-p/oc<i(a;,2/)J,).

3.5. An Example of a Proof

We chose the defined: eg program as our first real example of the use of strong
isomorphism for four reasons. Firstly it is a very simple program, involving no
recursion, that accomplishes an easily specified task. The second reason is that
the correctness proof is quite subtle, and involves several delicate manipulations.
Thirdly, each step in the proof is a simple combination of the axioms in the preced-
ing section. Finally it demonstrates that the only natural fragments of destructive
Lisp are Mpure, Mpure+ and Msexp. We shall refer to the axioms in a systematic and
self-explanatory fashion. For example do4. refers to the fourth axiom concerning
the data operations, namely

4. car(rplacd(x,y)) ~ let{z -<- car(x)}seq(rplacd(x,y),z).

While seql. refers to the first property of seq, namely

1. seq(e) ~ e

We begin, by force, with the definition of the program defined:eq.

defined:eg(x,y) <—

if (or(a<ora(x), o<om(y)),

o<om:eg(x,y),

let{oldx -<- cor(x), oldy-<- car(y)}

seq(rpIaca(x,T),

rplaca(y, NIL),

let{answer -<- atom:eq(car(x.), car(y))}

seq(Vp/aca(x, oldx), rplaca(y, oldy), answer))).

The theorem that we prove is, predictably, the following:

Theorem: defined:eq(x,y) ~ eg(x, y).
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Proof of Theorem: Clearly the result will be true when either x or y are
atoms. Consequently we need only consider the case when they are both cells.
We can simplify the problem even further by observing that by eq23 and eq24 the
theorem is equivalent to the following two statements:

1. defined:eq(x,y) ~ NIL whenever x ^ y.

2. defined:eq(x: y) ~ T whenever x = y.

We prove these in the order stated.

Proof of 1: Suppose that both x and y are distinct cells with xa and ya

their respective cars. Evaluating the body of defined:eq, simplifying the if and
eliminating the let in this context results in:

seq(rp/aco(x,T),

let{answer -<- atom:eq(car(x), car(y))}
seq(rplaca(x, xa), rplaca(y, ya), answer)))

It is this expression that, we shall demonstrate, is strongly isomorphic to NIL.

rp?aca(y,NIL),

let {answer -«- atom:eq(car(x), car(y))}
seq(rpkca(z, xa), rplaca(y, ya), answer))).

Pushing the seq inside the let produces (seqlO)

~ let{answer -*- seq(rp/aca(x,T),T-pZoco(y,NIL), atom:eq(car(x), car(y))}
seq(rp/aca(x, xa), rplaca(y, ya), answer))).

And now pushing the seq inside the atom:eq yields (seqlO)

~ let {answer -t- ciom:e5(seq(rp/aca(x,T), rp/aca(y,NIL), car(x)), c a r ( y ) ) }

seq(rp/aca(x, xa), rplaca(y, ya), answer))).

Commuting the two calls to rplaca gives (do!3, seq2)

~ let {answer -<- atom,:eq(s&q[rplaca,(y,HIIL), rplaca(x,l), car(x)), car(y))}

seq(rplaca(x, xa), rplaca(y, ya), answer))).

Now eliminating the call to car, (seqlO, do2, doO, seq2)

~ let{answer -<- a,tom:eq(seq(rplaca(y,l$IL), rp/aca(a;,T),T), c

seq(rp/oca(x,xa),rp/aca(j/,ya), answer))).
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Popping the seq out of the atom-.eq results in (seqlO)

~ let{answer -<- seq(rp/aco(y,NIL), rplaca(x,T), atom:eq(T, car(y)))}

seq(rp/aca(x, xa), rplaca(y, ya), answer))).

Commuting the calls to rplaca has the consequence that (do!3, seq2)

~ let {answer-*- seq(rj)/oca(x,T), rp/aca(t/,NIL), atom:eq(T, car(y)))}

seq(r-p/aca(x,xa), rplaca(y,ya.), answer))).

Now commuting the, gentle, arguments to the atom:eq call gives (do23)

~ let{answer x- seq(rp/aca(a:,T), rplaca(y, NIL), atom:eq(car(y),l))}

seq( rplaca(x, xa),rplaca(y,ya.), answer))).

Pushing the seq back inside the atom:eq call gives (seqlO)

~ Iet{answer x- aiom:e3(seq(rp/aca(a;,T),ry/aco(y,NIL), car(j/)),T)}

seq(rp/aca(x,xa),'"yZoca(y,ya), answer))).

Again eliminating the call to car produces (seqlO, seq2, do2, doO)

~ let {answer -«- atom: eq(seq(rplaca(x,f),rplaca(y, NIL), NIL), T)}

seq(rp/oco(a;,Xa), rpZoco(y,ya), answer))).

Pulling the seq out of the atom:eq for the last time leaves (seqlO)

~ let {answer -e seq(rpZaca(a;,T), rplaca(y, NIL), a<om:eg(NIL,T)}

seq(rp/aco(x, xa), rplaca(y, ya), answer))).

Simplifying the atom:eq call, (do27)

~ let {answer •+• seq(rp/aca(z,T), rpkca(?/,NIL),NIL)}

seq[rplaca(x, xa), rplaca(y, ya), answer))).

Now pulling the seq out of the let, again for the last time, (seqlO)

~ seq(rp/aco(a;,T),

let{answer -<- NIL}

seq(rp/aca(a;, xa), rplaca(y, ya), answer))).

We can now eliminate the let in favor of the following (Iet4, seq2)
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~ seq(rp/aco(x,T),

rp/aca(y,NIL),

rp/aca(x,xa),

rplaca(y,y&),

NIL))).

Commuting the calls to rplaca results in (do!3, seq2)

~ seq(Yp/aca(x,T),

rp/aca(x,xa),

rp/aca(y,NIL),

rplaca(y,y&),

NIL))).

Cancelling the redundant modification of y yields (do6, dolO, seq2)

~ se<i(rplaca(x, T), rplaca(x, xa), NIL))).

Similarly cancelling the modification of x provides (do6, dolO, seq2)

~ seq(NIL).

The simplest property of seq gives the desired result, (seql)

~NIL.

Dl.

Proof of 2.: Suppose that x and y, both cells, are in fact identical, and for
simplicity the car of x is xa. In this case we can immediately simplify the body of
defined:eq to:

rplaca(x,flIL),

iet{answer -<- atom:eq(car(x), car(x))}

seq(rplaca(x , xa), rplaca(x, xa), answer))).

Eliminating the redundant calls to rplaca gives (do6, ssq2)

~ seq(rp/aca(x,NIL),

1et{answer -<- atom:eq(car(x), car(x))}

seq(rp/aca(x, xa), answer))).

Pushing the seq inside the let produces (seqlO)
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~ let {answer- -<- seq[rplaca(x, NIL), atom:eq(car(x), car(x))}

seq[rplaca(x, xa), answer))).

Pushing the seq inside the atom:eq call produces, (seqlO)

~ let{answer -<- atom:eq(se<i(rplaca(x, NIL), car(s)), c<ir(:r))}

seq(rpkca(a;,xa), answer))).

Eliminating the car call gives (seqlO, seq2, do2, doO)

~ let{answer -<- a<om:e3(seq(rpkco(x,NIL),NIL), car(z))}

seq(rpkca(:r, xa), answer))).

Popping the seq out once again, (seqlO)

~ let{answer x- seq(rpZoco(x,NIL), aiom:eg(NIL, car(x))}

ssq(rplaca(x, xa), answer))).

Commuting the gentle arguments to atom:eq, (do23)

~ let{answer -<- seq(rp/aca(o;,NIL), a<om:eg(car(x),NIL)}

seq(rpkca(x,xa), answer))).

Pushing the seq inside yet again (seqlO)

~ let{answer -<- atom:eq(seq(rplaca(x,'NIL), car(a;)),NIL)}

seq(rpkca(o;,xa), answer))).

Eliminating the call to car, (seqlO, seq2, do2, doO)

~ let {answer -^ o<om:e3(seq(rpkco(x,NIL),NIL),NIL)}

seq(rp/aco(x, xa), answer))).

Popping the seq, (seqlO)

~ let{answer -̂ - seq(rp/aca(x,NIL), a<om:eg(NIL,NIL)}

se<i(rplaca(x, xa), answer))).

Simplifying the call to atom:eq, (do25)

~ let {answer -^ seq(rpZaca(a;,NIL),T)

seq(rp/aca(a;,xa), answer))).

Pulling the seq out for the very last time leaves (seqlO)

~ seq(rp/aca(a:, NIL), let {answer x- l}seq(rplaca(x, xa), answer))).

Forsaking the let for something simpler, (Iet4, seq2)

~ seq(rp/aca(x,NIL),rpkca(x,xa),T).

Ending with a whimper rather than a bang, (do6, dolO, seq2)
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~ seq(T).

Cfe. Drheorem



Chapter 4

A Plethora of Simple Examples

In this chapter we use the equivalence relations that we have introduced to
prove properties of and verify some well known programs. We begin with those
programs which can be verified, without causing too much pain, using the exten-
sional relations. We then go on to treat an wider class of programs that can be
verified using strong isomorphism. This is used as an excuse to show that proving
properties in this case is very similar to the trivial pure Lisp case. In other words
the proofs are of the transformation plus induction variety. We also make an effort
to show how such increased understanding can be utilized to write new programs,
as well as suggest the duality between program verification and program derivation
or transformation. Since we have not given a complete axiomatization of strong
isomorphism our approach in proofs will be somewhat model theoretic.

4.1. Example 0: The inplace-.reverse Program

Consider the simple minded pure definition of reverse.

slow.reverse(n) «—

ifn(u, NIL, append(slow:reverse(cdr(ii)), cons(car(u), NIL)))

In (Scherlis, 1980) and in Chapter 7 the following well known tail recursive version
is derived from the simple minded and slow one.

reverse(ii) <— ret>(u, NIL)

rev(u,v) «— ifn(u, v, rev(cdr(u), cons (car (u), v))))

It is easy to see that these two versions are equivalent in a very strong sense,
in fact it easily shown that

Theorem: reverse(x) ~ slow:reverse(x).

In this example, though, we are more interested in the following refinement of
reverse . Let us restrict our attention to pure lists. If u is indeed a pure list, then
the cell u belongs to neither Cel\s(cdr(u)) nor Ce\ls(cons(car(u), v)), provided
that it is not in Cells(v). Thus the cell u under these circumstances is disjoint
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from the value of rev(cdr(u), cons (car (u),v)). Consequently rather than create a
new cell via the cons we could, while preserving isomorphism in the value, recycle
the cell u. This leads to the definition:

inplace:reverse(\i) «— m:rei>(u, NIL)

in:rev(u, v) <— if(u, in:rev(cdr(\i),rplacd(Ti, v)),v))

The following theorem is a simple result that we shall prove in this section.

Theorem: reverse(x) = slow.reverse(x) = inplace:reverse(x) on pure lists.

We begin with the following result, adapted from (Mason and Talcott, 1985).

Theorem: If c0 ; po € Mu3t represents the Lisp list

(v0 Vi w2 ... vn)

with
= {c0...cn}

then
inplace:reverse(co) ; fi0 > cn ; nn+i

where

1- cn ; ̂ n+i represents the Lisp list (vn vn-i ... ^2^1 VQ).

2. SpineMn+i(cn) = {cn...co},

3. /^i = setcdr(co, NIL ; po), and

4. /i;+1 = setcdr(ci, c,-_i ; /Zj), for i 6 n + 1. In addition as a consequence of 3
and 4 we have

5. 8^ = 8pn+l with fj,n+i differing from ̂  only on {c,-}<6n+1.

Corollary 1: inplace:reverse(inplace:reverse(co ; ̂ o)) = CQ ; ^«o

Corollary 2: rei;erse(a;) = «/ow:re«er5e(x) = inplace:reverse(x) on pure lists.

Notice that unless Co ; Ho is a pure list we will not have that v; ; //n+i = «t ! A'o,
in other words inplace-.reverse may alter the elements of the original list. However
a little careful thought on the matter reveals that there is no particularly obvious
candidate for the epitaph reverse of a list in such structure sharing situations.

Proof of Theorem: We shall show by induction on i that

PI. m:r-et)(c0,NIL) ; ̂ 0 > m:ret;(cj+1,c,-) ; m+i > m:r

P2. i<<n-+ Q C = ic
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P3. 0 < j < i -> m+i(cj) = Hj+i(cj)

Note that

. for 0 < j < n HQ(CJ) = [vj,Cj+i] and Hj+i(cj) = [vj,Cj-i]

• for any c ; \i € M/ist with u ; ̂  = ccir(c) ; // we have by computation

in:rev(c, v) ; /i >

^> in:rev(u, rplacd(c,v)) ; /j,

>• in:rev(u, c) ; setcdr(c, v ; /x)

• since c0 ; /J.Q £ Mnst we have c,- ^ Cj, whenever z ^ j, and i, j £ n + 1.

Case z = 0: By computation, since ci ;/u0 = cdr(co);fio and /Xi = setcdr(c0, NIL;
/^o) we have

m:rev(c0 , NIL) ; /z0 > in:rev(a , c0) ; /ii .

Thus PI holds for z = 0. Since ̂  differs from /z0 only on c0 we have that

Po(cs) = /xi(ca) for 0 < s < n

so P2 holds. P3 is vacuous.

Induction step: Suppose 0 < i < n and

m:reu(c0,NIL) ; fj,0 > m:rev(c;,Ci_i) ; m

with /Uj satisfying P2 for i — 1 < j < n and P3 for 0 < j < i — 1. Thus Ci+1 ; ̂ i =
cdr(ci) ; p0 = cdr(ci) ; /z^. By computation again we have

m:rev(ci,Ci_!) ; pi > m:rei;(ci+i,Cj) ; m+i

where Hi+i — setcdr(cj,c;_i ; m). P2 and P3 hold for m+i because it only differs
from m on c^.

Termination case: So far we have shown that for 0 < i < n

zn:rev(c0,NIL) ; /z0 > in:rev(ci,Ci-i) ; m

with nj satisfying P2 for i < j <n and P3 for 0 < j < i. Thus P2 and P3 are
proved and cdr(cn) ', Hn — NIL ; \in. By computation we have

in:rev(cn,cn-i ) ; fj,n > m:reu(HIL, cn) ; ftn+i
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where pn+i = setcdr(cn,cn-i ; //„).

DP1,P2,P3

The theorem now follows from the above and the simple observation that

inplace:reverse(c0) ; fj,0 > m:rev(c0,NIL) ; /J.Q > cn ; fJ,n+i-

QTheorem

We will treat these versions of reversing lists in more detail later, using strong
isomorphism. Notice that we can use the derived functions to express simple
intensional properties of these programs. The following are simple examples of
this phenomenon which we leave as exercises for the reader.

Exercises:

1. appendtcons(x,y) S length(x)

1. slow:reverse*con3(x) =* let{y -<r length(x)}(^^-

3. reverse*con3(x) ^ lengih(x)

4. inplace:reverse*c°n3(x) = 0 on y/,-3t, note that doing this exercise also re-
quires defining the )| transformation on M3ezp rather than just Mpure+.

4.2. Example 1: The Recursive copy Program

In this example we deal with the traditional recursive copying program that
one learns about in introductory Lisp courses.

recursive: copy (\i) <—

if(a<om(u),

u,
cons (recursive : copy ( car(u)), recursive : copy( crfr(u))))

The following is a simple induction on | Cells ̂ (c)|.

Theorem: recursive: copy (x) = x on Mw/, Furthermore if recursive:copy(c) ;
H > c* ; n* then

1. Cells/1(c)nCells/t.(c*) = 0

2.

In general this is not the most useful copying algorithm. It has three obvious
defects:
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• Firstly recursive-.copy only constructs a copy which is Lisp equal (=) but not
necessarily isomorphic (=) to the original. In fact the copy obtained by using this
recursive program is the least compact S-expression (up to isomorphism) which is
Lisp equal to the original. By least compact we mean that the copy will possess
no cellular structure sharing. So, for some suitable c; fj, we actually have that

|Cellv(c*)| = 2lCelIs"(c)l - 1.

• Secondly, and perhaps most importantly, recursive-.copy will not terminate
on, let alone copy, cyclic S-expressions.

• Finally, its recursive nature means that it will use up stack proportional to the
maximum depth of its argument, and so on large structures it may run out of free
storage. Also since it does not recognize shared structure it will often duplicate
calls to itself.

4.3. Example 2: Substitution Programs

This example was suggested to me by Dave Touretzky, who is thanked for his
interest. We consider two versions of the substitution function, beginning with
the standard one; see for example (McCarthy, 1962a). The approach taken in this
program is that to make substitutions in a cons tree one copies the entire tree,
except of course for the substructures one is replacing. The actual program is:

subst(x, y, z) <—

ifs(eg(z,y), x,

atom(z), z,

T, cons(subst(x, y, car(z)), subst(x., y, cdr(z))))

The fact that subst completely copies the tree is sometimes used by Lisp hackers
when substitution is not the goal, e.g. consider the following equivalent but slower
definition of recursive-.copy

recursive-.copy (x.) <— subst(SIL,HIL, x).

Also notice that eq is used rather than equal in the base case; there is no real
agreement amongst (and even within) the various Lisp dialects as to this point,
see for example (Pitman, 1983) or (Brooks and Gabriel, 1984). The following are
simple properties of subst; we leave the proofs as exercises.

Theorem: Suppose [vz,t>j,,t>*]; fio € M«,/ then
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1. If svbst(vx,vy,v,) ; no >• t; i ; Hi and a 6 T is such that (v2 ; ^o)<r = vy then

2. If occur(uj, , v* ) ; /u0 > NIL ; ̂ 0 then v, ; ̂ 0 = *>i ! ^i-

3. subst(x, y, subst(x, y, z ) ) = subst(subst(x, y, x), y, 2)

Here the program occur does the obvious thing, namely it checks whether or
not the first argument can be reached by a car-cdr chain, including the trivial one,
through the second argument.

ocettr(x,y) <—

if(eg(x,y),T,if(atom(y),

NIL,

or(occw(x, cor(y)),

occitr(x, cdr(y))))

Formally occur satisfies the following:

Proposition: If [vi,u9] ; ̂  G Mwf then occur(vx,vy) ; /J, denotes either NIL ; fj,
or T ; fj, and the following are equivalent:

1. occur(vx, vy) ; n > T ; fj,

2. 3cr £ f>(vt;n) such that vx — (vy ; ^)a.

The next version we call lazy: sub st, although a better but more cumbersome
name would be no:change:no:work:subst. This version only creates new cons cells
when it is necessary, consequently the resulting S-expression shares as much struc-
ture with the original S-expression in which the substitutions are taking place. A
reference to it may be found in (Brooks and Gabriel, 1984).

lazy:subst(x., y, z) <—

ifs(eg(z,y), x,

atom(z), z,

T, let{ &-+lazy.subst(x.,y,car(z)),

d -«- lazy: sub st(x, y, cdr(z))}

if (and(e5(a, car(z)),

eg(d,

z,

con,s(a, d)))



78 A Plethora of Simple Examples

The crucial facts about lazy.subst are summarized in the following theorem. Note
that part two expresses that the result of carrying out lazy:subst(x,y,z) shares
as much structure with z as possible. These results will be proved as corollaries
of slightly stronger results concerning applications of the notion of strong isomor-
phism.

Theorem: Suppose [vz,vy,vz] ; ̂ o € Mwf and

la,zy:subst(vx,vy,vz) ; po > «i ; fJ*i

then

1. subst(x, y, z) = lazy:subst(x,y,z).

2. If a G f>vz;ii0 is such that

occur(vv,(v, ; / * O )<T) ; / *O > NIL ; no

then
(wj ;^o)<r = («i ;^I)<T-

Furthermore if vy 6 ft then we can relax the assumption to simply that
(V* -,Ho)a 5 / iO = ("1 S ^ O f f S A 1 ! -

Note that since both programs are defined in the Mpure+ fragment they will
leave their arguments unchanged. A treatment of destructive substitution pro-
grams, which are somewhat more complicated, can be found in (de Champeaux,
1978) and (de Champeaux and de Bruin, 1981).

4.4. Example 3: A Sophisticated Length Program

In this example we deal with a length function which not only calculates the
length of a list, but also detects whether the list is cyclic or, less appropriately but
more commonly, infinite. A reference to it may be found in (Steele, 1984).

elength(Iis't) <— e/en(list,list,0)

elen(s1ovi,f ast,n) <—

ifs(n«/Z(fast), n,

null(cdr(f ast)), n + 1,

and(eg(fast,slow),not(eg(n,0))), INFINITY,

T, elen(cdr(slou),

n + 2))
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The key fact about elength is given in the next statement.

Theorem: The following holds:

on M'"<
\ INFINITY on Meliat - UK.t

and elength(x) recurs at most |Spine(a;)| times.

Proof of theorem: We leave the proof that elength(x) ~ length(x)
as an exercise, and only outline the more difficult case. Suppose that

on

c0 ;

This assumption implies that for n G r^J, ln £ ^(CD;/J) and (CQ ; /u)i» 6 C. Conse-
quently, letting Cj = (CD ; /^)p we have by the finiteness of <5(Co;/*) that

{[m0,mi] £ N(2) | m! > 0 and cmo = cmo+TOl}

is non-empty. Now choose [mo,mi] to be the lexicographically least element of
this set, and put x to be the smallest solution to the integer equation

0 = mo + x [mod mi].

The list GO ; n can then be represented by figure 10.

..
I f f Y

Vo Vl VI Vmo

Figure 10. CD ;
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Now observe that while c,- 7^ c^j for 0 < j < i we have that

e/en(c0,c0,0); \i > e/en(cj,c2i,2z) ;/x.

Letting k = TOO + x we claim

1. Cfc = C2fc, and

2. Cj ^ c2j- for 0 < j < k.

It is easy to verify that, by our choice of notation, 1. is equivalent to

k — 2k [mod mi]

which is true by virtue of our choice of x. Now suppose there is a j with 0 < j < k
and Cj = C2f, then by our choice of notation we would have

0 = j [mod mi].

Now if j < TOO then we would contradict our choice of [mo, mi]. On the other
hand if TOO < j < mo + x then we would contradict our choice of x. Consequently
no such j exists and we are done.

^Theorem

4.5. Example 4: The iterative:append Program

Consider the following two versions of the list append function, the first being
the traditional pure version.

append(u, v) <— if(u, cons (car (u), append(cdr(\i)), v)), v)

The problem with this definition is that to perform the cons in the non-trivial case
we must first compute the result of append-mg the cdr of the first argument onto
the second. This is easily seen to entail that append will use up stack proportional
to the length of its first argument. The second is an iterative version written
using rplacd. It utilizes the destructive operations in the following way. Instead of
waiting around for the result of doing the append of the cdr of the first argument
before it can do the cons, it performs the cons with a, possibly, dummy cdr value
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and later on in the computation rectifies this haste. The result is a program that
need not use any stack.

iterative: append (u,v) <—

if n(u, v, let {w -*- cons(car(n),v)}seci(it:app(cdr(n),u, v),w)))

ifn(u,u, let{z-<- cons(car(u),v)}
seq(rplacd(v,z),it:app(cdr(M),z,v)))

Notice that while this system of definitions is not tail recursive, it can easily be
made so by adding an extra parameter val to it:app, modifying the definitions
appropriately. The following result could and should be taken as verification of
the correctness of the iterative: append program, since we are reducing its behavior
to that of a very simple program.

Theorem: iterative : append (u, v) ~ append(u, v)

Proof: Clearly if u = NIL then the theorem is true, so suppose that u G
M/ist — {NIL}. We prove the following lemma by induction on the length of u.

Lemma: append^, v) ~ let{w-<- cons(car(u), v)}seq(zi:app(c<fr(u),w,v),w)

Proof of Lemma:

Base Case: car(u) = x and crfr(u) = NIL here we have

let{w-<- cons (car (u), v)}seq(zi:opp(c^r'(u),w, v),w) ~

~ let{w-<- con.s(z,v)}seq(i<:app(NIL,w, v),w),

since car(u) ~ z and cdr(u) ~ NIL.

~ let{w-^ cons(x, v)}seq(NIL,w),

by unfolding and simplifying the ii:aj?p(NIL,w,v) call.

~ let{w -<- cons(x, v)}w,

since seq(NIL,w) ~ w.

Ci cons(x,v)

~ append (u,v)

DBase Case
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Induction Step: Suppose car(u) = x and cc?r(u) = UQ with UQ € M(i«t — {NIL},
then

let{w-<-

~ let{w-<- con.s(a;,v)}seq(zi:apy(uo,w,v),w),

since car(u) ~ x and cdr(u) ~ UQ.

Now

seq(«i:app(u0,w,v),w) ~

~ seq(let{z-<- «ms(car(uo), v)}seq(rp/ac</(w,z), it:app(cdr(\i0),z, v)),w),

by unfolding the i<:app call.

~ seq(let{z-^ con3(car(uo), v)}seq(j<:app(c(ir(uo),z, v), rplacd(w, z)),w),

since w is not visible in it:app(cdr(uo),z,v).

Also note that

let{z-<- con.*(car(uo),v)}seq(«<:opp(c<ir(uo),z, v)rpZocd(w, z)) ~

~ Iet{zx-let{w0

by using some simple properties of the let construct.

~ let{z-«- append (UQ,V)} rplacd(v, z),

by the induction hypothesis.

Thus we have

let{w-<- cons(car(n), v)}seq(i<:opp(c<ir(u),w,v),w) ~

~ let{w-<- cons(car(u), v)}seq(let{z-«- append (UQ,V)} rplacd(v, z),w)

~ let{w-«-con3(cor(u),v)}seq(r-p/ac(i(w, append (u0,v)),w),

eliminating the inner let for something simpler.

~ let{w-<- con^(car-(u),v)} rplacd(v, append (UQ,V)),

since rplacd(u, . . .) returns w.

~ rplacd(cons(car(M), v), append (u0, v)),

again eliminating the let for something simpler.

~ cons(car(u), append (UQ,V)),

using simple properties of cons and rplacd.

~ append (u, v)
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Dl/emma

The theorem now follows by observing that if u,v;// € Msexp with u;fi £ Mnst

then neither
append(u,v); (J,

nor
iterative: append (u,v); //

Will denote. Dxheorem

An immediate consequence of this theorem is that any equation proved to
be true of append carries over to the iterative-.append program. For example the
following express fundamental properties of append and by the above are also true
of iterative:append.

Theorem:

. append (NIL, v) ~ append(v,KL) ~ v on Mnat

m append (cons (x, NIL), v) ~ cons(x,v)

• append(uo,append(ui,U2)) — append(append(v,o,ui),u<2)

These properties are fundamental in the sense that in pure Lisp they char-
acterize the extensional behavior of append. The following is proved by a simple
induction on the length of the list x.

Proposition: Suppose / satisfies the above theorem, (with ~ replaced by =).
Then

f(x,y) = append(x,y} on Mn3t.

However these properties do not characterize append in the stronger sense that
such an / must be strongly isomorphic to append, as the next example indicates.
In fact there are an infinite number of, albeit artificial, examples of non-strongly
isomorphic functions which satisfy the above theorem.

4.6. Example 5: The nconc Program

This example deals with the nconc program. We are only concerned with its
behavior on Mn3t which is reflected in our definition.

nconc(u, v) <— ifn(u, v, seq[nconcl (u,v),u))

nconcl(n, v) <— if(c<Zr(u), nconcl («Zr(u),v), rplacd(v, v)))
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This program is similar to the append program except that rather than copy
the top level or spine of the list u it simply modifies the original u so that the
last cell in its spine now points to v rather than NIL. Thus we cannot show that
nconc(u, v) and append(u, v) are strongly isomorphic. What we can do is to verify
that it has similar algebraic properties to those of the normal append program. In
a later example we will give another type of verification proof whereby we show

nconc(copy:list(x),y) ~ append(x,y)

for a list copying program copy.list. Notice that, like our iterative version of the
append program, nconc as written above is not tail recursive. The addition of one
extra argument, the value parameter, to the nconcl program is all that is needed
to transform the definition into a tail recursive one.

Theorem:

• nco7ic(NIL, u) ~ raco7ic(v, NIL) ~ v on Mn3t

• nconc(cons(x,$IL),v) ~ cons(x,v)

• nconc(uo,nconc(ui,U2)) ci nconc(nconc(uo,ui),U2) as long as the w,- £ Mnst
have disjoint spines.

Remarks:

• Note that if MO 6 M/ist — {NIL} then nconc(uo,uo) will be cyclic.

• The condition in the associativity result is thus necessary since

nconc(uo, nconc(uo, cons(SIL, NIL))) 9^ nconc(nconc(uo, M Q ) > cons(NIL, NIL))

because the right hand side, unlike the left hand side, fails to denote.

• Actually a seemingly weaker condition is sufficient to obtain associativity of
nconc. We only need that the last cell in the spine of Ui is distinct from the
last one in the spine of Uj, 0 < i < j < 2, since this easily seen to imply that
the spines must be disjoint. This condition can then be stated in terms of the
behavior of the program last which is the defined as follows:

Z<w<(list) «- if (list, if (cdr (list), la$t(cdr (list)), list), list).

We need only require that

eq(last(ui),last(uj)) ~ NIL for 0 < i < j < 2.

Proof of Theorem: The first two properties are simple exercises. We prove
the third by induction on the length of MO-
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Base Case: MO = NIL, so

by the first property.

again by the first property.

~ nconc(nconc(uQ,ui),u2))

DBase Case

Induction Step: Suppose that the theorem holds for all lists of length less
than UQ 6 Ml;i«t — {NIL}. We consider two possibilities: 1. cdr(uo) ^ NIL and 2.
cdr(uo) = NIL. In the first case we have

by unfolding and simplifying the outer nconc call.

seq(nconcl (cdr(u0), nconc(ui, w2)), MO),

by unfolding and simplifying the nconcl call.

seq(seq(7icowcl(c(ir>(uo), wconc(ui,U2)), crfr(uo)),

inserting a superfluous seq and a defined pure term.

by folding the inner seq.

seq(nconc(nconc(cdr (UQ), "i ),

using the induction hypothesis.

se<i(nconc(cdr(nconc(uo,

by pulling the cdr outside.

seq(cdr(nconc(nconc(uo,

again by pulling the cdr outside.
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removing the useless cdr call.

Pi.

While in the second case we have that

Thus this case follows from

Claim: If u o » w i > U 2 € Mnst have disjoint spines and cdr(uo) = NIL then

Proof of Claim: This is a direct derivation, we consider three cases: 1. MI
NIL, 2. cdr(u\) = NIL and 3. cdr(ui) ^ NIL In the first situation we have

rplacd(uo, nconc(u i,

~ nconc(nconc(uQ,HIIL),U2)

In the second case we have

since by assumption eq(uo,ui) ~ NIL.

,U2), w)
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Finally in the last case we have

acd(uo,nconc(ui,U2)) —

~ rplacd(v.Q, seq(nconcl (HI , w2),

~ seq(s&q(nconcl(ui,u2),ui),rp

since the spines of ^0,^1 and u-i are all disjoint.

Dciaim Ch Drheorem

4.7. Example 6: The List Reversing Programs Revisited

This example deals in more depth with the various reverse programs that
have already been introduced. The main one we shall be concerned with is the
inplace: reverse program that reverses a list by cdr-ing down it reversing the point-
ers as it goes. Firstly recall the two other examples, reverse and slow.reverse. The
following result we leave as an exercise.

Lemma: rev(u,v) ~ append(rev(u,1iIL),v).

Corollary: slow.reverse(x) ^ reverse(x^).

In this example we show that inplace:reverse has properties similar to those
possessed by the reverse program. Because inplace:reverse modifies the nature of
its arguments we cannot prove a relation like reverse(x) ~ inplace:reverse(x).
However the fact that it satisfies analogous properties can in a sense be taken as
verification. In particular we prove the following two theorems. The first property
is self explanatory. The second is related to the well know relationship between
append and reverse, namely

reverse(append(u,v)) ~ append(reverse(v),reverse(u)).

Another method of verification that we shall mention later is to show

inplace:reverse(copy:list(x)} ~ reverse(x).

Theorem A: inplace:reverse(inplace:reverse(u)) ~ u on M/,st.
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Theorem B: If u,v € Mn3t have disjoint spines then

inplace:reverse(nconc(u,v)) ~ nconc(inplace:reverse(v),inplace:reverse(u)).

We prove these results using the following lemma, the nconc-ified version of
the rev lemma above.

Main Lemma: If u,v £ Mn,t have disjoint spines then

in:rev(u,v) ~

Note that this lemma allows us to write a faster program for the specialized
task of ncorac-ing the destructive reversal of a list onto another list. Namely
computing

nconc(inplace:reverse(x), y),

in Maclisp, (Pitman, 1983), (Touretzky, 1983), produces a function called nreconc.
The faster version is given by

nreconc (x.,y) <— tn:rer;(x,y),

and is a simple example of how verification of one program can lead to the writing
of more efficient related programs.

Proof of Main Lemma: This is by induction on the length of u G M{,-«t- As
usual we leave the trivial base case to the reader. So, suppose that the lemma is
true for uj, the cdr of u.

in:rev(u,v) ~

~ in:rev(ud,rplacd(u,v))

~ nconc(in:rev(ud, NIL), rplacd(u, v)),

by the induction hypothesis.

~ nconc(in:rev(u,t, NIL), nconc(rplacd(u, NIL), v))

~ nconc(nconc(in:rev(ud, NIL), rplacd(u, NIL)), u),

since nconc is associative under the conditions of the lemma.

~ nconc(in:rev(ud, rplacd(u, NIL)), v),

again by the induction hypothesis.

~ nconc(in:rev(u,'SI'L),v)
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DMain Lemma

We shall prove Theorem B, which is then shown to imply Theorem A, by
using the main lemma and the following consequence of it.

Corollary: If u,v 6 M/;s< have disjoint spines then

in:rev(v, m:ret»(w,NIL)) ~ in:rev(nconc(u, v ) ,NIL) .

Proof of Corollary: This is by induction on the length of u, Rather than do
the base case we shall assume that the reader can verify the result for themselves
in the cases when v is either NIL or a list of length one. We do the induction step:
Assume that v is a list of length > 1, cdr(v} = VA, vj ^ NIL and that u and v
satisfy the hypothesis.

in:rev(v,in:rev(u,1HIL)) ~

~ in:rev(vd, rplacd(v, in:rev(u, NIL)))

~ in:rev(vd, nconc(rplacd(v, NIL), in:rev(u, NIL))),

by a simple property of nconc and rplacd.

~ in:rev(vd, nconc(in:rev(rplacd(v, NIL), NIL), in:rev(u, NIL))),

since it is easily seen that rplacd(v,HIL) ~ in:ret)(rp/occ!(-w,NIL),NIL).

~ in:rev(vd, in:rev(rplacd(v, NIL), in:rev(u, NIL))),

by the main lemma.

~ in:rev(v,i, in:rev(nconc(u, rplacd(v, NIL)))),

by the induction hypothesis.

~ in:rev(nconc(nconc(u, rplacd(v, NIL)), «<;)),

again by the induction hypothesis.

~ in:rev(nconc(u, nconc(rplacd(v, NIL),u^), NIL),

since the associativity of nconc is applicable in this case.

~ in:rev(nconc(u,v),'SIL),

by a simple cancellation property.

"-"Corollary
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Proof of Theorem B: This is a direct derivation.

nconc(inplace:reverse(v), inplace:reverse(u)) ~

~ nconc(«n:rei;(v,NIL), m:T-ei>(w,NIL))

~ jn:ret;(w, m:ret>(«,NIL)),

by the main lemma.

~ in:rev(nconc(u,v),'SI'L),

by the corollary.

~ inplace:reverse(nconc(u, v))

^Theorem B

Proof of Theorem A: We prove this by induction on the length of u. The
base case is trivial so suppose that it holds for lists of less length than w. Clearly
we may assume that

u = nconc(w0 ,wi)

for two lists MO, MI of less length than u. We prove

inplace:reverse(inplace:reverse(nconc(uo,ui))} ~ nconc(uo,Wi)

inplace:reverse(inplace:reverse(nconc(uo,ui))) c±

~ inplace:reverse(nconc(inplace:reverse(ui),inplace:reverse(u0))),

by theorem B.

~ nconc(inplace:reverse(inplace:reverse(uo)),

inplace:reverse(inplace:reverse(ui))),

again by theorem B.

by the induction hypothesis.

OTheorem A.
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4.8. Example 7: List Copying Programs

Often copying all of an object is not required; for example when the object is
a pure list it is sufficient for many purposes to merely copy the spine of the list.
In Common Lisp this function is called Copy-List, see (Steele, 1984) for example;
its task is to copy only in the cdr direction. A simple version of this function is
given as follows:

rec: copy: list (x) <— if (a<om(x),x, cons (car(x), rec:copy:list(cdr(-x)))).

However a more efficient version can be written in a style similar to the
iterative:append program. This version is tail recursive and is given by the follow-
ing definition.

copy:list(x) <—

if(a<ora(x), x,let{w-<- cons (car (x), crfr(x))}

it:copy:list(cdr(yi), w, w))

it:copy:list(-x.,y,val) <—
if(aiom(x), val,let{w-<- cons (car (x), c<fr(x))}

seq(rplacd(y,v)

it:copy:list(cdr(x.),w,val)))

Notice that regardless of whether or not a; is a pure list, both

copy:list(x) and rec-.copy.list(x)

will be pure lists. Duplicating the methods of the iterative:append example allow
us to prove the following theorem. Again, as in the iterative:append example, it
should be taken as verifying the more complex copy.list program.

Theorem: rec:copy:list(x) ~ copy.list(x).

A simple induction on the length of the pure list demonstrates the first part
of the following proposition, the second part is then an immediate consequence of
it and the above theorem.

Proposition:

1. rec:copy:list(x) = x via a map / which is the identity on Elements(x), for
any pure list x.

2. copy.list(x) = x via a map / which is the identity on Elements(z), for any
pure list x.
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Proof of 1: As we have already mentioned the proof is by induction on the
length of the list v ; p. The base case, when v = NIL, is trivial so we do the
induction step. Suppose v ; p 6 Mnat is a pure list of length n + 1 and that
rec:copy.list(u) ;^0=u;fj.0 via a map / which is the identity on Elements^ (w)
for pure lists, u ; fj,0, of shorter length. Then letting va ; /j, = car(v) ; n and
Vd ; \i. — cdr(v) ; n we have that

rec:copy:list(v) ; fj, > cons(va,rec:copy:list(vd)) ; /z.

Now by induction we have that rec:copy:list(vd) ; fj, = VA ; p via a map / which is
the identity on Elements/1(u(i). Assume that rec:copy:list(vd) ; fJ. ~^> v^ ; fi* then

**rec:copy:list(v) ; fj, > cons(va,v*i) ; n* > v* ; //

Defining /* as follows gives the result

{
x if x € A U Elements^(v),
u* if x = v,
f ( x ) if x € Spine,,^),
g(x) otherwise.

Here g is any bijection from C — Cells^v) — > C - Cells ̂ «(u*) DI.

The following example and exercises use copy.list to exhibit obvious relation-
ships between programs we have already studied. In the next section we shall
discuss queues and use similar methods to prove properties of efficient queue op-
erations.

Theorem: inplace:reverse(copy:list(x)) ~ reverse(x)

Proof of Theorem: The theorem follows directly from the following lemma,
which we prove by induction on the length of the list x.

Lemma: in:rev(rec:copy:list(x),y) ~ rev(x,y)

Proof of Lemma: We leave the base case, when x = NIL, to the reader. The
induction step proceeds thus. Suppose that x is a non-empty list and that the
lemma is true for all lists of shorter length. Then

in:rev(rec:copy:list(x), y) ~

pulling the rec:copy.list call out gives

^ let{u -t-rec:copy:list(x)}in:rev(u,y).

Unfolding and simplifying the rec-.copy.list call leaves
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- cons(car(x),rec:copy:list(cdr(x}))}in:rev(u, y).

Unfolding and simplifying the in:rev call leaves

~ let{u -<- cons(car(x),rec:copy:Ust(cdr(x)))}

in:rev(cdr(u), rplacd(u, y)).

Pulling the call to rec:copy:list out leaves

~ let{u> -<-rec:copy.list(cdr(x))}

let{w -<- cons(car(x), w)}in:rev(cdr(u), rplacd(u, y)*).

And since cdr(u) = w,

~ iet{w -<- rec:copy:list(cdr(x))}

let{u -<- cons(car(x),w)}in:rev(w, rplacd(u,y}).

Using a simple property of rplacd,

-4-rec:copy:list(cdr(x))}

x- cons(car(x), w)}in:rev(w, se<i(rplacd(u, y), u)).

Pulling the seq out from the in:rev call,

~ let{uj -4-rec:copy:list(cdr(x))}

let{u -<- cons(car(x), w)}sec{(rplacd(u, y), in:rev(w, u)).

By another simple fact we have

~ let{w -4-rec:copy:list(cdr(x))}

let{w x- rplacd (cons (car(x), w), y)}in:rev(w, u).

Cancelling the rplacd call,

~ let{iy -+rec:copy:list(cdr(x))}let{u -<- cons(car(x),y)}in:rev(w,u).

Commuting the let s produces

~ let{u -<- cons (car (x},y)}let{w -*-rec:copy:list(cdr(x))}in:rev(w,u).

let elimination gives

~ let{u -^ cons(car(x),y)}in:rev(rec:copy:list(cdr(x)):u).

A single use of our induction hypothesis yields

~ letjw -<- cons(car(x),y)}rev(cdr(x),u).

let elimination once more,

~ rev(cdr(x), cons(car(x),y)).

Folding finalizes things,
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Exercises:

0. Using the previous result deduce that inplace:reverse(x) = reverse(x) when
a; is a pure list.

1. copy.list(x) ~ append(x, NIL) on Mnst

2. Show that nc<mc(copy:list(x), y) ~ append(x, y) and then deduce that when
x and y are pure lists with disjoint spines nconc(x,y) = append(x,y).

3. seq(rplacd(last(x),y),x) ~ nconc(x,y) for x 6 Mu3t,x ^ NIL.

4. last(nconc(x, y)) ~ seq(ncanc(x,y),last(y)) for x ^ NIL ̂  y.

5. last(append(x, y)) ~ last(y) for x ^ NIL 7^ y.

6. nreconc(copy:list(x),y) ~ append(reverse(x),y)

4.9. Example 8: Queue Representation and Manipulation

In this example we describe and prove properties of queues and queue op-
erations in Msexp. This example was motivated by the following passage in
(Cartwright, Hood and Matthews, 1981).

It is noteworthy that all practical dialects of LISP (such as LISP 1.6 and
MACLISP) include a multitude of impure operations (e.g rplaca, rplacd)
which directly modify the pointer and record structures representing S-
expressions. The semantics of these operations cannot be described at the
abstract level of S-expressions; they have meaning only at the level of the
underlying implementation.

Despite the logical complexity of impure operations, they are indis-
pensable in many practical applications because they enable the program-
mer to write much more efficient programs. As an illustration, consider
the problem of maintaining a queue in Pure LISP. The standard solution
is to store the queue as a linear list, inserting new elements at the end and
removing elements from the front. The operations of inspecting and re-
moving the first element require only constant time. Inserting an element
at the end of the list, however, requires time proportional to the length
of the list. By using sophisticated data structures and algorithms, it is
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possible to reduce the asymptotic time bound, but the resulting programs
are much more complicated. l

On the other hand, if we allow impure (destructive) operations, we
can improve the efficiency of the simple linear list solution so that all op-
erations take only constant time. The modification is obvious: maintain
a pointer to the last record of the list representation and use the pointer to
destructively update the list (using rplacd) when inserting a new element.
It is not only more efficient than the Pure LISP solutions, but it seems
logically simpler as well. Nevertheless, it is difficult to prove that the
impure solution actually implements a queue. The Pure Lisp solutions
have simpler proofs because they are expressed at a much higher level of
abstraction.

The idea in this example will be to represent a queue as a cons cell, the car
of which is a pure list that stores the contents of the queue. The cdr will then
point to the last cell in the spine of this pure list. Thus our representation is only
a minor modification of the one suggested above, in that we store the head and
tail pointers together in a single cell. Diagramatically a queue, in our scheme of
things, is pictured in figure 11.

The cell cqueue will be called the queue cell, the cells CQ,CJ, ... ,cn are called
the spine of the queue and the objects VQ, vi,..., vn are the elements of the queue
and are assumed to be disjoint from the spine and the queue cell. An empty
queue is anything isomorphic to the value of cons(NIL, NIL). We shall denote the
collection of all queues by Mqueue, and we shall define six different operations
on queues. They are front, pop, push:front, push:rear, copy-.queue and rotate.
Explicitly:

1. Front returns the first element of the pure list stored in the car of a non-
empty queue. In other words it returns the first element of a non-empty
queue. It is not defined for empty queues and so the user should always test
to see whether or not a queue is empty. The actual definition is

/ron.<(queue) <— car(car(queue))

If we split the queue into two separates lists so that both the head and tail are accessible
in constant time, we can reduce the cost of n queue operations from O(n2) to O(n).
A single operation, however, can still require O(n) steps. In particular, removing an
element from the queue when the head list is empty involves replacing the head list by
the reverse of the tail list- a linear time operation. At the cost of adding more lists
to the representation and further complicating the definition of the queue operations,
we can reduce the cost of every operation to constant time, producing a real time
implementation (Hood and Matthews, 1980). The trick is to distribute the work done
in reversing the tail list over a number of operations.
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V0 Vl Vl Vn

Figure 11. A Typical Queue

2. Pop removes the front element from an non-empty queue and returns the
modified queue, it is does nothing if the queue is already empty. We give two
different versions of this operation. The first is pure:pop which is a Mpure+
function while the second pop is a destructive version. We have made no
attempt to make the pure versions as efficient as possible. Their purpose
is merely instructive and as the reader may have guessed are used to prove
properties of their destructive counterparts. The actual definitions are:

pure :pop (queue) <—

if(eg(ca7-(queue), cdr(queue)),

corw(NIL,NIL),

cons(cdr(car (queue)), cdr (queue))))

pop (queue) <—

if(eg(car(queue), aZr(queue)),

rplaca(rplacd (queue, NIL), NIL),

rp/aca(queue, aZr(car(queue))))

3. PushiFront expects two arguments; the first is supposed to be a new element
for the second argument which is a queue. Push:Front then returns a new
queue obtained from the second argument by adding the first argument to the
front of the list. Notice that for the value of this operation to be a queue as we
have defined them we must place certain constraints on the first argument.
Namely it must be disjoint from the queue cell as well as the spine of the
list. Again we shall give two versions of this operation, a simple minded pure
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version pure:push:front and a destructive version push:front, the definitions
being:

pure:push:front(v, queue) <—

let{new:list -*- cons(v, car(queue))}

coras(new:list, Za.si(new:list))

push:front(v, queue) <—

if(cdr(queue),

rp/aca(queue, cons(v car (queue))),

seq(rp/aca(queue, cons(v, car (queue))),

rplacd(queue, car(queue))))

4. Push:Rear expects the same type of arguments as Push:Front. It however
returns the queue obtained by placing the first argument at the rear of the
second argument's list.

pure:push:rear(v, queue) «—•

let{new:list -«- append( car (queue), COTW(V, NIL))}

con,s(new:list, /a.si(new:list))))

push:rear(v, queue) <—

if(co'r(queue),

seq(rplacd(cdr(queue), corw(v, NIL)),

rplacd (queue, co'r(c(/r(queue)))),

seq(rp/aca(queue, cores(v, NIL)),

rplacd (queue, car(queue))))

5. Queue:Copy copies the queue cell as well as the spine of the list. The result
is a queue that is isomorphic to the original. Note that the elements of the
queue are exactly the same (i.e. eq) to the original elements. We give two
versions; the first is a straightforward recursive version while the second is an
iterative version much in the spirit of iterative:append and copy.list.

pure: copy -.queue (queue) *—

let{new:list -<- list:copy(car(q\ie\ie))}

con.s(new:list, /a.s<(new:list))
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copy:queue(queue) <—
if(cor(queue),

letjw -<- cons (car (car (queue)), NIL)}
it:copy:queue(cdr(car(queue)),v,v)),

cows (NIL, NIL))

it:copy:queue(rest, current,new:queue) <—

if(rest,
it:copy:queue(cdr(rest),

cdr(rplacd(current, cons(car(rest), NIL))),
new:queue),

cons(new:queue, current)))

6. Rotate expects a queue and returns a new queue obtained by placing the
first element of the queue at the rear. It does nothing if the queue is either
empty or contains only one element. Unlike the similar operation described
by

if (eq(car(queue), crfr(queue)),queue,push:rear(front(queue),pop(qa.eue))),

the impure version of Rotate does not create any new cells. Thus a sequence
of n rotations on a queue of length n returns exactly the same queue in exactly
the same memory. The actual definitions are:

pure:rotate(queue) <—

if (e5(caj~(queue), cdr(queue)),

queue,

let{new:list -<- append (cdr( car (queue)),

cons (car (car (queue)), NIL))}

con.s(new:list, Zo«<(new:list)))

rotate (queue) <—

if (eg(cor(queue), cdr(queue)),
queue,

seq(rp/ac<i(c(ir(queue), car(queue)),
rplacd(queue, cor(queue)),
rpJaca(queue, c<Zr(ear-(queue))),
rplacd (cdr(queue), NIL),
queue))
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The first thing to notice is that all the destructive queue operations take
constant time, except of course copy:queue. Since we shall demonstrate the cor-
rectness of these destructive operations in terms of the program copy.queue our
first result concerns this cornerstone.

Theorem A: copy:queue(x) ~ pure:copy:queue(x) on Mgueue

Just as in the case of copy-.list this theorem is proven by almost exactly the
same methods that were used to to prove that append and iterative-.append are
strongly isomorphic. As a consequence we leave the proof as an exercise. The next
result demonstrates the connection between the pure and the impure versions of
the remaining queue operations.

Theorem B: If x 6 Mqueue and y £ M3exp then

1. pure:pop(x) ~ pop(copy:queue(x})

2. pure:push:front(y, x) ~ push:front(y, copy.queue(x))

3. pure:push:rear(y,x) ~ push:rear(y, copy.queue(x))

4. pure-.rotate(x) ~ rotate(copy:queue(x)}

Proof of Theorem B: We shall only prove 1. and 3. leaving the other two
simple variations as exercises. Furthermore, in the light of the previous result,
it suffices to prove the results for pure:queue:copy rather than the more complex
iterative version.

Proof of 1. This is a direct derivation:

pop(copy:queue(x)), ~

which by Theorem A is

— pop(pure:copy:queue(x))

~ pop(let{new:list -<- list:copy(car:(x))}

co7w(new:list, /<w<(new:list))),

by unfolding the pure:copy:queue call.

~ let{new:list -<- list: copy (car ( x ) ) }

let{z •+ cora.s(new:list, /w<(new:list))}

pop(z),

by pushing the pop call in.
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~ let{new:list -«- list: copy (car (x))}

let{z -<- con.s(new:list, /as<(new:list))}

if(eg(car(z), cdr(z)),

rplaca(rplacd(z, NIL), NIL),

rplaca(z, c<ir(car(z)))),

by unfolding the pop call.

~ let{new:list -<- list:copy(car(x))}

if (eg(new:list, /as<(new:list)),

let{z -<- c07w(new:list, Z<w<(new:list))}

rplaca(rplacd(z, NIL), NIL),

let{z -4- C07i3(new:list, /as<(new:list))}

rplaca(z, cdr(car(z)))),

by pushing the let in and simplifying.

~ let{new:list -<- fo<:cop7/(car(x))}

if (eg(new:list, /a5<(new:list)),

Di.

cons(cdr(car(neu:list)),

again by pushing the let in and simplifying.

pure:pop(x),

by folding.

Proof of 3: The easiest way to prove this is by considering two cases depending
on whether or not x is an empty queue (car(x) = cdr(x) = NIL). We shall only
do the non-empty case, leaving the empty case as an exercise. So assume that
car(x) ^ NIL ̂  cdr(x) then:

push:rear(y , copy.queue(x)) ~

which is again by theorem A.

~ push:rear(y,pure:copy:queue(x))

~ push:rear(y, let{new:list -<- Ust:copy(car(x))}

co?is(new:list, /a«<(new:list))),

by unfolding the pure: copy: queue call.
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~ let{new:list -<- list: copy (car ( x ) ) }

let{z -<- cons (new: list, last (new:list))}

push:rear(y,z),

by pushing the push:rear call in.

~ let{new:list -<- list: copy (car ( x ) ) }

let{z -<- cons (new: list, Z<wi(new:list))}

if(cdr(z),

seq(rplacd(cdr(z), cons(y, NIL)),

rplacd(z, cdr(cdr(z)))),

seq(rplaca(z, cons(y,'SI'L)),

rplacd(z, car-(z)))),

by unfolding the push:rear call.

~ let{new:list ^- foi:copi/(car(a;))}

let{z -<- co?i3(new:list, /o^<(new:list))}

seq(rpkc(i(Zo3<(new:list), cons(j/, NIL)),

new:list

rplacd(z, cdr(cdr(z)))),

by our assumptions on x as well as

adding a redundant term to the seq.

~ let{new:list -<- list: copy (car ( x ) ) }

let{z -<- cora3(new:list, Jo.si(new:list))}

seq(?iconc(new:list, cons(y, NIL)),

rplacd(z, cdr(cdr(z)))),

by utilizing a previous exercise.

~ let{new:list x- list: copy (car (x))}

let{z -<- cons(new:list, /as<(new:list))}

seq(nconc(new:list, cons(y, NIL)),

rplacd(z, /O3i(new:list))),

since /asi(new:list)) = cdr(cdr(z)).

~ let{new:list -*- list-.copy (car ( x ) ) }

seq(nconc(new:list, cons (y, NIL)),

corw(new:list,
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by eliminating the let and simplifying.

~ let{new:list -<- nconc(list:copy(car(x)), cons(y, NIL))}

corw(new:list, Za.si(new:list))),

pushing the nconc into the let.

~ let{new:list -<- append(car(x), cons(y, NIL))}

cons (new: list, Ja.s<(new:list))),

again by a previous exercise.

~ pure:push(y, x),

by folding.

Da. Drheorem B.

4.10. Example 9: The Substitution Programs Revisited

In this section we shall, using the notion of strongly isomorphic expressions,
prove certain facts left unproven previously. In particular we want to prove that
subst and lazy.subst produce answers that are related in the following fashion:

Theorem: For [vx,vy, v z ] ; fj, 6 Msexp we have that

subst(vx,vy,vz); fJ, = lazy:subst(vx,vy,vz) ; (i.

We do this by showing

Theorem A: equal(subst(x,y, z), lazy:subst(x,y, z)) ~ T on Mw/^s.

The result then follows from the previously mentioned fact that equal(x, y) ~
T implies x = y. The following are left to the reader as they are simple exercises.
The last three allow a short proof of the following, previously left unproven.

Theorem: Suppose [vx,vy,vz]; /*o € Mwf and

lazy:subst(vx,vy,vz) ; fj,0 > vi ; /^.

Then if a € ^uz;/i0 i
s such that

occur(vy, (vz ; no)a); po > NIL ; /j,0

then
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Furthermore if vy 6 A then we can relax the assumption to

(vz ;vo)<r ;Ho =(vi j/Ji),, ;m.

Exercises:

0. subst(SIL, NIL, x) ~ recursive-.copy(x).

1. lazy:subst(y,y,x) ~ a;.

2. if (occur(y, z), z, lazy:subst(x, y, z ) ) ~ z.

3. car (lazy :subst(x, y, z ) ) ~ if(eq(y, z),car(x),lazy:subst(x, y, car(z)))

4. cdr(lazy:subst(x,y,z)) ^ if(eq(y,z),cdr(x),lazy:subst(x,y,cdr(z)))

Proof of Theorem A: This is by induction on the size of z. The base case we
leave to the reader as usual. We outline the induction step.

equal(subst(x,y, z), lazy:subst(x, y, z ) ) ~

~ let{a;i -*-subst(.. -) ,Z2 -«• lazy:subst(.. .)}equal(xi,X2)

~ let{xi -<-ifs(.. .),x2 -4-ifs(...)}equal(xi,x2)

by unfolding both the subst and the lazy.subst calls

~ ifs(eq(z,y), equal(x,x),

atom(z),equal(z, z),

T, equal(cons(subst(x,y, car (z)), subst (x,y, cdr(z)),

let{o -<- lazy:subst(x, y, car(z)),

d+ lazy:subst(x,y, cdr(z))}

if (...))),

By a sequence of simple transformations.

This in turn by elementary properties reduces to showing that when atom(z) ~ NIL
we have

T ~ equal(cons(subst(x,y, car(z}),subst(x,y, cdr(z)),

let{ a-<- lazy:subst(x,y, car(z)),

d -<- lazy:subst(x, y, cdr(z))}

if (and(eg(a, car(z)),

eq(d, cdr(z))),
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This is what we now show.

equal(cons(subst(x, y, car(z)), subst(x, y, cdr(z)),

let{ a + lazy:subst(x,y,car(z)),

d-t- lazy:subst(x,y, cdr(z))}

if (and(eg(a, car(z)),

eq(d, cdr(z))),

which by pulling the let out becomes

let{a-<- lazy:subst(x,y, car(z)),d-+ lazy: sub st(x,y, cdr(z))}

equal(cons(subst(x,y, car(z)),subst(x,y, cdr(z)),

if (and(e?(a, car(z)),

eq(d, cdr(z))),

z,
cons(a,d))))))

now by unfolding and simplifying the equal call we obtain

let{a-<- lazy:subst(x,y, car(z)),d-<- lazy:subst(x,y, cdr(z))}

an.d(equal(car(cons(subst(x,y, car(z)),subst(x,y, cdr(z))),

car(if(aiLd(eq(a, car(z)),

eq(d, cdr(z))),

cons (a,

equal(cdr(cons(subst(x, y, car(z)), subst(x, y, cdr(z))),

cdr(if(and(eq(a, car(z)),

eq(d, cdr(z))),

we can now push the car and cdr calls inside to obtain
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lazy:subst(x,y, car(z)),d-t- lazy:subst(x,y, cdr(z))}

aiLd(equal(subst(x,y, car-(z)),

if (and(eg(a, car (2)),

eq(d, cdr(z))),

car(z),

car(cons(a,d)))))),

equal(subst(x, y, cdr(z)),

if(and(eg(a,car(z)),

eq(d, cdr(z))\

cdr(z),

cdr(cons(a,d)))))),

simplifying the if gives

~ let{a-<- lazy:subst(x,y, car(z)),d-<- lazy:subst(x,y, cdr(z))}

and( equal (sub st(x, y, car(z)),

a),

equal(subst(x,y, cdr(z)),

d))

finally we use the induction hypothesis to obtain the result

~T

^Theorem A

4.11. Example 10: The Deutsch-Schorr-Waite Marking Algorithm

We chose this example for historical reasons, since there have been many
different verification proofs in the literature. It is a version of the famous Deutsch-
Schorr-Waite marking algorithm, (Schorr and Waite, 1967) and (Deutsch, 1968),
that is used in implementing mark and sweep garbage collection, the usual method
for reclaiming useless and unusable cons cells in the usual dynamic storage alloca-
tion environment. See (Knuth, 1968) or (Schorr and Waite, 1967) for an extensive
discussion of garbage collection and marking algorithms. In this example we de-
scribe what we believe to be the most convincing, useful and least technical proof.
We shall also discuss the other proofs since they all differ from this one. In this
example we work within the low level Lisp data structure Mmfsexp introduced ear-
lier. The Deutsch-Shore-Waite marking algorithm uses pointer reversal to avoid
using an explicit stack. Pointer reversal is a very powerful technique that is used
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in destructive memory programming. The idea is quite simple: the program de-
structively alters the structure it is operating on to store the information that a
stack would normally be used for. In this case the algorithm scans the graph in a
left-first fashion, marking cells as it proceeds. Since the cells are marked when they
are first visited, looping or repeatedly scanning the same subgraph is avoided. A
succinct treatment of pointer reversal, or pointer rotation as it is sometimes called,
may be found in (Suzuki, 1982). However the notation in that paper follows the
unfortunate trend, as exemplified by the Lisp SETF mechanism, see for example
(Steele, 1984), (Brooks and Gabriel, 1984) or (Pitman, 1980), of confusing control
and data. In this structure our version of the algorithm is given by the following
definition.

dsw -.mark (cell) <— mar£(cell,NIL))

morfc(cell, stack) <—

if (terminal(c&1.l),

pop(cell, stack),

let{a-<- car-(cell)}

seq(se<ra(cell, l),

rp/aca(cell, stack),

mark(&, cell)))

pop (cell, stack) «—

if n( stack,

cell,

if (ejtf (stack), 0),

let{d •+ cdr(stack), os -<- car(stack)}

seq(,se</(stack, l),

rpZaca(stack, cell),

rplacd( stack, os),

marfc(d, stack))

let{os -<- cdr(stack)}

seq(sei/(stack, 0),

rplacd(sta.ck, cell),

pop(stack, os))))

ll) <— or(o<om(cell), eg(m(cell), l))

Our verification proof consists in showing that dsw.mark is strongly isomorphic
to a very simple recursive program. This has several advantages over most proofs.
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Firstly, rather than proving that the algorithm meets an equally complicated the-
oretical specification, our specification, being the simple recursive version below,
is by its very nature simpler and does not force the idle reader to grapple with
the sometimes overbearing details of the underlying semantics and proof rules.
Another reason is that our proof emphasizes the relationship between program
verification, program transformation and program derivation, in that because the
proof is of a syntactical nature it can be thought of in two ways. The first is the
way we are presenting it, a verification of a complex algorithm via a reduction to
a very simple algorithm. The second is the reverse or dual, obtaining or deriving
a complex more efficient algorithm from a simpleminded or specifying algorithm.
This very simple algorithm is defined as follows:

if(<ermma/(cell),

cell,

seq(seim(cell, l),

rl :dsw:mark(car(ceI1)),

rl :dsw:mark(cdr(cell)),

cell))

As we have already stated, our verification proof simply involves showing that the
following holds under certain simple conditions:

Theorem: dsw.mark(x) ~ r\:dsw.mark(x).

Of the existing proofs in the literature the closest to ours in spirit, but not in
style, is that found in (Topor, 1979). Topor's approach is to separate the proof into
two essentially distinct parts. The first part involves properties of the underlying
data structure, while the second relies on properties of the algorithm itself. The
proof itself is of the intermittent assertions variety that was first introduced by
(Knuth, 1968) and later developed by (Burstall, 1974) and (Manna and Waldinger,
1977). Topor's paper is also interesting in that there he, to some extent, suggests
the possibility of our proof, or at least one like it. In (Topor, 1979) he gives three
marking algorithms, Algorithm 1, which is a slight variation on our rl :dsw:mark,
Algorithm 3, being his version of the Deutsch-Schorr-Waite marking algorithm,
and in between, Algorithm 2, which we describe by the following definition:

r2:dsw:mark(c&Il) «— seq(r^:marfc(cell, NIL), cell)
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r2 :mark(cell, stack) <—

if(<ermma/(cell),

if (stack, r2:mark(cdar( stack), cdr(stack)), cell),

seq(^e<w(cell, 1),

r4!:marfc(car(cell), cons (cell, stack))))

This version is simply a(n almost) tail recursive program obtained from the
trivial one by the incorporation of an explicit stack, dsw.mark eliminates this
storage extravagant feature by storing the stack on the structure being marked.
In his conclusions Topor says:

An alternative method of proof which has apparently not been used is to
first verify Algorithm 2, a purely constructive program, using the present
(or any other) method, and then use the techniques of (Milner, 1971)
or (Hoare, 1972) to show that the Shorr-Waite algorithm simulates Al-
gorithm 2. In such a proof the representation function describing how
the stack of Algorithm 2 is represented in the Schorr-Waite algorithm is
defined by

Rep(X) «-

if X = NIL then empty

else if f (X) = 0 then Rep(car(X))

else Push(X,Rep(car(X))).

However the structure of this definition means that the proof of simula-
tion is not completely straightforward but requires yet another inductive
argument. Since the proof of Algorithm 2 is almost as long as that of
the Schorr-Waite algorithm, the resulting proof is no shorter than the
one we have given. This fact suggests that further research into proofs of
simulation and the use of data structure is desirable.

This suggestion is very much in the spirit of our proof. The main differences
are that we do not choose Algorithm 2 as our go-between but rather the trivial
Algorithm 1. Thus our proof is not one of simulation but of actual equivalence,
and does not suffer from the deficiencies that Topor raises. We also do not use the
methods of (Milner, 1971) or (Hoare, 1972) but our own.

Most of the other proofs of correctness are of the inductive assertions variety as
described by (Floyd, 1967). Gries, in a companion paper to Topor's (Gries, 1979),
proves the correctness and termination of a version of the algorithm in a rather el-
egant fashion, although he simplifies the world so as to combine the mark and field
bits as well as exclude the existence of atoms. Other proofs have been given. We
mention them briefly: Kowaltowski (Kowaltoski, 1973) extended the techniques of
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(Burstall, 1972) to encompass a proof of the marking algorithm; Suzuki (Suzuki,
1976) in his dissertation, describes a machine checked proof that uses recursively
defined predicates in his assertions; Morris (Morris, J. H, 1972) gives a more direct
analysis similar to that of Topor's; finally a proof using denotational semantics has
been given in (Poupon and Wegbreit, 1972). Let Unmarked(cell) be the set of
unmarked cells reachable from cell via paths through unmarked cells. We finish
this example by proving

Theorem: dsw.mark(x) ~ r\:dsw:mark(x), assuming

(Vc 6 Unmarked(a;))/(c) = 0.

Proof of Theorem:

Lemma: The following are strongly isomorphic under the hypothesis of the
theorem:

mark(cell, stack)

seq(rl :dsw-.mark(cell), pop(cell, stack))

To see that the result follows it suffices to observe that

marfc(cell,NIL) ~ rl :dsw.mark(c&l\)

and
rl •.dsw.mark(ce'L'L) ~ seq(ri:^w:mar^(cell),pop(cell,NIL))

The proof of the lemma is straightforward, using the following simple commuta-
tivity property of rl:dsw:mark. This is left to the reader to verify. It expresses
the fact that rl :dsw:mark does not depend on the contents of a marked cell.

Commutativity Property: If i9 £ {rplaca, rplacd, set/} and e is any expres-
sion then the following expressions are strongly isomorphic.

if (eq(m(x), 1), seq(rl:dsw:mark(z), i?(z, y), e), T)

if (eq(m(x), 1), seq(tf(o;, y), rl:dsw:mark(z), e), T)

Proof of lemma: We prove this lemma by induction on the size of

Unmarked(cell).
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For convenience we suppose that m(cell) = 0, car(cell) = va and cdr(cell) =
v<j. Since the identity clearly holds when cell is terminal, we also assume that
f ( c ) = 0 whenever c 6 Unmarked(cell).

, stack) ~

~ if(<errmnaZ(cell),

pop(cell, stack),

let{a-<- car(cell)}

seq(seim(cell, 1),

rp/aco(cell, stack),

mark(a., cell))).

Evaluating the let gives

~ if(iermmffl/(cell),

pop(cell, stack),

seq(sefm(cell, 1),

rpfaca(cell, stack),

Since cell has been marked we must have

Unmarked(va) < Unmarked(cell)

thus we can use the induction hypothesis to obtain

~ if(iermma/(cell),

pop(c&Il, stack),

seq(3eim(cell, 1),

rp/aca(cell, stack),

rl:dsw.mark(va)

pop (va, cell))).

Unfolding the pop(va , cell) call

and eliminating the vacuous if n yields
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if(iermma/(cell),

pop(cell, stack),

seq(.seim(cell, 1),

rp/aco(cell, stack),

rl:dsw:mark(va)
if(eg(/(cell),0),

let{d -<- cdr(cell), os -«- car(cell)}

seq(«*/(cell, 1),

rp/aca(cell,va),

rp/ac</(cell,os),

mark(d, cell))

let {os + cdr (cell)}

seq(5e</(cell,0),

This simplifies to the following since the field bit is 0

if (<ermmoZ(cell),

pop(cell, stack),

seq(se<m(cell, 1),

ry/aca(cell, stack),

rl:dsw:mark(va),

rp/aca(cell,va),

rplacd(cell, stack),

Again we can use the induction hypothesis to obtain
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~ if(ierjru'naZ(cell),

pop (cell, stack),

seq(seiT7i(cell, 1),

rpZaca(cell, stack),

rl:dsw.mark(va),

rp/oca(cell,va),

rplacd(ceI1, stack),

rl:dsw:mark(vd),

Unfolding and simplifying the pop(v<f,cell) call results in

if(iermma/(cell),

pop(cell, stack),

seq(ie<m(cell, 1),

rp/oca(cell, stack),

rl :dsw:mark(va),

se</(cell, 1),

r-p/aca(cell, va),

rplacd(cell, stack),

rl:dsw:mark(vd),

pop(cell, stack))).

Using the commutativity property gives
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~ if (terminal(cell),

pop(cell, stack),

seq(.seim(cell, 1),

rplaca(cell, stack),

rp/aco(cell,va),

setf(cell, 1),

sef/(cell, 0),

rplacd(ceI1., stack),

rl:dsw:mark(va),

rl:dsw:mark(vd),

pop(cell, stack))).

Finally cancelling redundant operations gives

~ if(terminal(c&ll),

pop(cell, stack),

seq(sefm(cell,l),

rlidsw.mark^a),

rl:dsw:mark(vci),

pop(cell, stack))).

We obtain the result by folding and a minimum of effort

~ seq(r-l:^w:marfc(cell),pop(cell,stack)).DLemmaDrheorem

4.12. Example 11: The Morris Traversal Algorithm

Consider the following simple program that applies the gentle operation process,
pre-order style, to each cell in Cells (tree).

rec:traverse(tree) <—

if(<ziom(tree),

tree,

sec((process (tree),

rec:<rot;erse(car(tree)),

rec:traverse(cdr(tree)))).
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The Deutsch-Schorr-Waite marking algorithm demonstrates one way to elim-
inate stack from such a program, assuming the structure being operated on has a
mark and field bit. In this section we will look at another way, one that does not
need a mark or field bit, but only requires that its input is somewhat nicer than
the ordinary run of the mill S-expression. The input will be assumed to belong to
Mhered, which is roughly speaking the collection of all hereditary lists that contain
no cellular structure sharing. Explicitly:

Definition: c ; /j, £ Maexp is in Mhered if the following two conditions hold

1. (Vc0 6 CellsM(c))(co ; /i 6 MK,t).

2. (Va0, <TI)(((C ; /i)«,0 = (c ; n)Vl A CTO ̂
 ffi ) ~> (c ! P)<TO € A).

We also need to assume that the operation process does not depend on the
contents of its cellular arguments. Actually we need only assume that

seq[rplacd(x , NIL), process(y), e) ~ seq(process(y), rplacd(x, NIL), e).

The no stack version of the above algorithm, restricted to Mhered, consists of the
following two programs. It is a slightly modified version of (Morris, J. M, 1979).
The idea behind the program is quite simple. If we are to traverse tree we must
traverse the car and then the cdr. If the car is an atom this reduces to traversing
the cdr. So assuming that the car is not an atom we must traverse it and somehow
store the fact that when done with the car we have still the cdr ahead of us. This
is done in the following way. Before we traverse the car, which is a list, we alter
the cdr pointer of the last cell in its spine so that it points back to tree. This
backward pointer is detected when we finally arrive at this altered cell. Which of
course corresponds to the completion of traversing the car. The pointer is then
restored to NIL and we then proceed with marking the cdr. The detection of the
backward pointers is the job of the auxiliary program ult. (I wish to thank Rodney
Topor for bringing this algorithm to my attention.)

u/i(tree, parent) <—

let{cell -<- caY(tree)}

if(or(not(cell), eg (cell, parent)),

tree,

ttft(cell, parent))
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traverse(tree) «—

if(aiom(tree),

tree,

if(a<om(car-(tree)),

s&q(process(tT&e), traverse(cdr(tree))),

let{ter x- ult( car (tree), tree)}

ifn(c(ir(ter),

seq(process (tree),

rplacd(ter, tree),

traverse(car(tree))),

seq[rplacd (ter, NIL),

The theorem that we shall prove is, predictably:

Theorem: rec-.traverse(x) ~ traverse(x) on Mitred-

We begin by defining a class of objects, that are relevant to the proof of the
theorem. This is necessary since although we wish only to consider hereditary
lists, the program forces us to consider a wider class of objects.

Definition of Marked: A cell CQ 6 Cellsj,(c) is said to be marked in c ; // if it
is such that

(car(c0 ; /z))i- = c0

for some n e N.

Definition of Half-marked: An S-expression c ; /u is said to be half-marked if
the following conditions hold:

1. Either c is marked or else all marked nodes in c ; /z are in Cells ̂ (cdrfc)), and
each marked node c; is pointed to by the cdr pointer of exactly one cell, c* , in
the spine of cor(cj); also each marked cell is pointed to by at most two other
cells.

2. Letting CD, . . . ,cm be all the marked nodes in c ; fj, and //* be the memory
obtained by evaluating

seq(rplacd(c*0, NIL), . . . , rplacd(c*m, NIL))

in /z, then for any c* 6 Cells^c) we have that c* ; p* 6 Mftered-
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The point of the auxiliary program ult should be clear. Firstly if c • n is not
marked and its car is not an atom, then

ult(car(c),c) • n ~ last(car(c)) ; fi.

On the other hand if c ; \i is marked then using the notation from the definition
above we have:

ult(car(c), c) ; fj, ~ c* ; p.

Lemma: Assuming that

seq[rplacd(x, NIL), process^), e) ~ seq(proces.s(j/), rplacd(x, NIL), e)

then the following hold for any half-marked S-expression.

1. If c ; n € M/ist and is not marked then traverse(c) ; n ~ rec:traverse(c) ; fj,

2. If c ; fj, $ MUM is not marked and Ci is the marked cell in the spine of c, with
CQ the cell prior to c\ then

traverse(c) ; \i

~ seq(rp/ac<i(co,NIL),

rec:<roi;erse(c),

traverse(cdr(ci)) • ft

Proof of Lemma: The proof is by induction on the rank of c ; fj,, the rank in
this case is the number of unmarked cells reachable via paths through unmarked
cells. The base case is left to the reader as usual, so suppose that 1. and 2. hold
for all half-marked objects of less rank than c ; /j,.

Proof of 1. We divide this into two separate cases depending on whether or
not car(c ; n) is an atom. The case when it is an atom is straightforward:

traverse(c) ; n

~ se<±(process(c),

traverse(cdr(c)} ; /j,

by unfolding and simplifying.

rec:traverse(cdr(c)) ; fj,

using the induction hypothesis.



Example 11: The Morris Traversal Algorithm 117

~ seq(process(c),

car(c),

rec:traverse(cdr(c)) ; fj,

by inserting a defined gentle term.

~ seq(process(c),

rec:traverse(car(c)),

rec:traverse(cdr(c)) ; fj,

since rec:traverse(x) ~ x on A .

~ rec:tmverse(c) ; /z

by folding.

So let us suppose that the car of c ; /j, is not an atom. Consequently it is a list;
taking CQ to be the last cell in its spine, we have:

traverse(c) ; n

~ seq(process(c),

rplacd(c0,c),

traverse(car(c}) ; p

by unfolding and simplifying.

rplacd(c0,c),

rplacd(c0),KL),

rec:traverse(car(c)),

traverse(cdr(c)) ; /j,

using the induction hypothesis.

~ seq(process(c),

rec:traverse(car(c)),

traverse(cdr(c)) ; p

cancelling the redundant operations.

rec: traverse (car (c)),

rec:traverse(cdr(c)) • fj,

using the induction hypothesis.
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~ rec:traverse(c)

by folding neatly.

Proof of 2. Again we must consider two cases, depending on whether or not
the cdr(c ; /u) is marked. Beginning with the unmarked case, we leave the case
when the car of c ; /z is an atom to the reader. Thus let ca be the last cell in the
spine of car(c ; /A).

traverse(c) ; fj,

rplacd(ca,c),

traverse(car(cj) ; p

by unfolding and simplifying.

~ seq(process(c),

rplacd(ca,c),

rplacd(ca),HIL),

rec:tmverse(car(c)),

traverse(cdr(c)) ; ft

using the induction hypothesis.

~ seq(process(c),

rec:traverse(car(c)),

traverse(cdr(c)) ; (J,

cancelling the redundant operations.

rec:traverse(car(c)),

rplacd(co,fHlj),

rec:traverse(cdr(c)),

traveTse(cdr(c\)) ; fj.

using the induction hypothesis.

process(c),

rec:traverse(car(c)),

rec:traverse(cdr(c)),

traverse(cdr(ci)) ; fj.
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commuting operations.

rec:traverse(c),

traverse(cdr(ci)) ; fj,

by folding.

Now in the situation where cdr(c ; /i) is marked we proceed as follows, noting
that CQ = c and c\ = cdr(c)

traverse(c) ; \i

~ s&q(process(c),

rplacd(ca,c),

traverse(car(c)) ; [i

again by unfolding and simplifying.

rplacd(ca,c),

rplacd(ca},'KIL),

rec:traverse(car(c)),

traverse(cdr(c)) ; fi

by utilizing the induction hypothesis.

~ seq(process(c),

rec:traverse(car(c)),

tmverse(cdr(c)) ; /j,

cancelling redundant operations.

~ seq(proces«(c),

rec:traverse(car(c)),

rplacd(c,HIL),

traverse(cdr(ci)) ; ̂

unfolding and simplifying.

~ seq(rplacd(c, NIL),

process(c),

rec:traverse(car(c)),

traverse(cdr(ci)) ; ft
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commuting operations.

~ sec[(rplacd(c, NIL),

process(c),

rec:traverse(car(c)),

NIL,

inserting a defined term.

~ seq(rp/ocrf(c, NIL),

process (c),

rec:traverse(car(c)),

rec:traverse(cdr(c)),

traverse(cdr(ci)) ; /u

by definition of rec:traverse.

~ seq(rplacd(c: NIL),

rec:traverse(c),

traverse(cdr(ci)) ; n

finally folding.

dLemma Drheorem



Chapter 5

The Effectiveness Theorems

In this chapter we prove, among other things, the effectiveness theorems. We
shall actually prove them in a somewhat more general context than the one in
which we stated them in Chapter 3. Take 21* to be an arbitrary countable r-
structure, r a finite similarity type (that being the isomorphism type of a first
order language).

21* =< A, < / > * , . . . , <£* , RQ, ..., Rn, O- >a€A

The <j>* are rotary, possibly partial, operations on A and the R* are n^-ary re-
lations, we also for convenience assume that T, NIL ^ A. Since we are going to
be dealing with the first order theory of 21* the possibly partial nature of the
<£* is somewhat bothersome. Also because of the emphasis of our approach, re-
garding them as m,- + 1-placed relations in the usual way is also awkward. For
these and other reasons we introduce the following modification 21 of 21 . Let
A = A 0 {T, NIL} and put

21 =< A, (£<>, • • • , <£„, Rl, • • • -Rm. T, NIL, a >a€A

Here the <j>i are total m,--ary operations obtained by extending <j>* so that anything
in A™' — £0« is mapped to NIL, and R] is the characteristic function, using T
and NIL, of the relation R* as viewed as a relation on A . If we regarded 21* as a
relational structure then the following would be a simple exercise.

Proposition: Th(2l) and Th(2l*), the respective first order theories of these
structures, are recursive in one another.

As usual we do not spend any time trying to distinguish the element a and
the constant symbol that denotes it. The memory structure that we work with in
this section, Ma, is defined as follows. Its memory objects are just those of Maexp

with atoms A . The memory operations are

®2l = { < ^ o > - - • ^ > n , -Ro) - - - - ^ in i &iom, eq , cons , car , cdr,rplaca,rplacd}

where fa(v ; n) = w ; fj, iff v £ Am>' with </>i(v) = w and R](v ; n) - w ; /z iff v £ ATOi

with R](v) = w. The effectiveness theorem can be stated as follows. Let ~ be any
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one of =,= or ~. and Aj(ya) be the collection of all equations CQ ~ e.\ where
the ei are terms in Mla and eo ~ e.\ is indeed true.

Theorem A: A+(Ma) is recursive in Th°(2l), the quantifier free part of Th(2l).

As an application of the methods developed to prove this theorem we shall
also prove the unbounded isomorphism theorem:

Theorem B: If ei(x), i £ 2 are primitive terms such that e0(x) = e\(x) and the
6i(x) are unbounded, then there is a term 0(x) which is total on MJj , does not
alter or enlarge the memory it is evaluated in, takes only the values T or NIL, and
which satisfies

1. e0(» ̂  ei(x) on {v ; fj, \ 6(v); /z > T ; /z}

2. ei(x) is bounded on {v ; /z | 0(v); fj, > NIL ; p}

Using the three equivalence relations we can define three logics over Ma: £5,
£2 and jCj respectively. If Th^(Ma) is the collection of £^-sentences valid in Ma

and Th™ (Ma) is the subset consisting of sentences of alternation rank less than
or equal to n (i.e the quantifier rank when one considers Vx and 3x to be single
quantifiers), then we also prove the following two theorems which in opposition
to the effectiveness theorems demonstrate the differing complexities of the three
equivalence relations. It is not only the failure of a substitution theorem which
separates the extensional relations from strong isomorphism but also their logical
complexity.

Theorem C: For every n 6 N we have that Th!l(IW]a) is recursive in Thn(2l).

Theorem D: Regardless of the complexity of Th(2l), when ~ is either = or =
we can interpret true arithmetic in Th^(Ma). Consequently Th^(Ma) is exactly
AJ in Th(2l), when 21 is recursively presented.

5.1. The Underlying Logic

In this section we define the three logics as well as settle some notation. We
let Term(2l) be the set of terms of the T-structure 21 in the variables

and if X C A we let Termx(2l) be the set of terms which only contain variables
from X. The first order language with equality, which we denote by £a, is built
up from these terms in the usual way. In contrast the language, £^, denotes the
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first order language without equality built up from the atomic formulas from E<&,
and x € X, using the relation ~ and the operations

-i, A, 3z.

Explicitly Ea is denned inductively to be the smallest set containing both V =
ft ® C and X @ A, closed under the following formation rules:

• If etest,ethen,eeii,e 6 Ea then if(eteat,ethen,eeise) € Ea-

• If ei , . . . , en, ebody € Ea and x\, . . . , xn 6 X are distinct then

. If ei , . . . , en e Ea then seq(ei , . . . , en) £ Ea-

• If i? is either an n-ary memory operation or n-ary function symbol from H ,
and ei , . . . , en G Ea then -d(e.\ , . . . , en) e Ea-

The atomic formulas of £^ are of *ne form

eo ~ ei

where e0,ei are in Ea- The formulas are then built up from these in the usual
manner.

5.1.1. The Quest for a Quantifier

The syntax must now give way to the semantics. The satisfaction relation
in this dynamic setting is somewhat subtler than in the usual first order case.
Suppose that v £ M'£ , ej(x),i € 2 are terms in £^ and 0, #o,0i are formulas of
£^ then the boolean and atomic cases are defined as usual:

M (= eo(z) ~ ei(z) [v] <S=$ e0(v) ; fj, ~ ei(i;) ; /^.

n \= 16 [v] ̂ =^ n \£ 6 [v]

A « h ( 0 o A 6li) [v]<=>n\=00 [v] and p \= 61 [v]

However in the case of the existential quantifier we cannot simply say

H^=3x 0(x,y) [v] <=> 3v* 6 V such that ^ |= 0(x,y) [v*,v]

since, firstly for this definition to make sense we must also require that v* G
Secondly, restricting ourselves only to those objects already created seems narrow
minded and not in the spirit of the quantifier. The following definition seems
natural in the case of the extensional equivalence relations.
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Definition: Suppose that v € MJ^', ei(x),i € 2 are terms in £* and 6,9o,0i
are formulas of £^ then we define /j, f= 9[v] by induction on the complexity of 6 as
follows:

n \= e0(x) ~ ei(x) [v]

/x |= -.0 [i;] «=» // £ 0 [«]

n \= (e0 A 0i) [v] <$=*> n\=00 [v] and /a |= <9i [u]

/* |= 3a; 0(z, y) [w] <£=>• 3/z* 3 ̂ , p* £ Ma and a w € V U A such that

Remarks:

Thus in the dynamic case the existential quantifier should be read as saying
there is an object, constructive prior to evaluation, such that, rather than the
usual static interpretation of there is an (already existing) object such that.
There is a difference because in any particular memory there is only a finite
number of existing objects.

Note that the inclusion of eq eliminates the need to treat the logic with equality
in the case of the extensional relations, since eg(eo,ei) ~ T is equivalent
to CQ = e\ when ~ is either = or =. We do not include it in the strong
isomorphism case since it is not in the spirit of the relation. This is because
we must either treat it as an intensional relation which is stronger than ~ or
else an extensional relation which is weaker than ~. In the latter situation
the laws of equality will unfortunately fail.

As usual we let Vx<j> abbreviate -i3x-i<^, but we should warn the reader that
not all the usual first order axioms are valid in these dynamic logics. For
example the second quantifier axiom in (Chang and Keisler, 1973) which is
stated thus:

2. If 0, «/> are £^ formulas and ij> is obtained by freely substituting each
free occurrence of x in <j> by the term t (i.e., no variable free in t shall
occur bound in tl> at a place where it is introduced), then

is no longer valid in this dynamic situation. A simple example of this is when <j> is

(V*)(ej(*,aO~T)
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ancU is
cons(x,x).

The first axiom of (Chang and Keisler, 1973)

1. If <j>,i/> are £* formulas and x is a variable not free in (/> then

does, however, remain valid. In the case of ~ the usual laws of equality, as in
(Chang and Keisler, 1973), remain valid.

In the case of the extensional relations, however, there is a simple extension
of the first axiom which holds. It makes use of the let construct and the following
definition of pushing a let inside a formula.

Definition: Suppose that <j> is a formula in £^, e is an expression in Ea and x
does not occur bound by a quantifier in cj>. Then we define

by induction on the complexity of <j> as follows.

let{x -«- e}eo ~ let{z -<- e}e\ if <j> = (ei ~ ei),
-.(let{z + e}<£o) i f<£ = -.<Ao,
let{z + e}90 A let{a; + e}91 if ̂  - (^ A fc),

When ~ is either = or = then the following modification of the defective rule
is valid.

• If <^>, «/> are £^ formulas, tj> is let {a; -^ e}4> where e G Esa is gentle, no oc-
currence of x in <j> is bound by a quantifier and finally no variable free in e
becomes bound in V1, then H (Va;)^ — » V1-

Note that this rule is not valid for the intensional relation, for in the case
of strong isomorphism the following sentence is, in a sense unfortunately, valid
(because in strong isomorphism new cells must be identified with new cells and
old cells with old cells)

(Va;)-.(a:~c07w(T,T)).

But
let{z-*-cons(T,T)}-i(;r ~ cons(T,T))

is clearly false.
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It is for this reason we will discuss other interpretations of the existential
quantifier in the intensional case. In the case of the extensional equivalence re-
lations we can define the existential quantifier in terms of an infinite disjunction.
Let <G>S be the collection of all gentle terms with free variables amongst the y, then
we have the following proposition.

Proposition: Suppose that <£(z, y) is a formula of £^ where ~ is either = or
= then

(3x)<t>(x,y) •$=$• V let{x-+e(y)}<f>(x,y).

Again this proposition fails for strong isomorphism, as illustrated by the same
example given above. In fact the meaning of the existential quantifier in the
intensional case is quite different from the extensional case. Suppose that e(y) is
a term in E<a and

(3x)(x ~ e(y))

is valid in £5. Then e(y) is a predicate. Conversely if e(y) is a predicate then we
can conclude that

(3*)(* * e(y))

is valid in £2 . We could easily strengthen the meaning of the existential quantifier
in the case of strong isomorphism by defining it as follows.

First Alternate Definition: Suppose that <£(o;,y) is a formula of £S then

\/

In this situation we would have the following consequence; suppose that e(
is a term in Ea and

is valid in £2. Then e(y) is gentle. Conversely if e(y) is gentle then we can
conclude that

is valid in £S. We could go even further and define the existential quantifier as a
disjunction over all expressions, not just gentle ones.

Second Alternate Definition: Suppose that <j>(x,y) is a formula of £S then

V
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In this case we would have that for any expression e(x) the formula

~ e(x))

is valid. However we would also have some very weird consequences; an amusing
one is the following.

Exercise: Suppose that <f>(x) is a formula in £5 with exactly one free variable,
also assume that the variable y does not occur in <j>, Finally assume that

(3x)(atom(x) ~ NIL A </>(x))

is valid. Then show that

(Vz)(3y)(a*om(z) ~ NIL -*• <£(*))

is also valid (the variables are as they should be).

For no other reason other than uniformity we shall take the definition of the
existential quantifier to be the same as in the extensional case. We have not
investigated the properties of £S in the two alternate cases but suspect the results
will carry over in some form. In all practical uses of strong isomorphism we have
never needed to resort to using the quantifier, consequently we do not feel this is
a pressing issue.

5.1.2. An Outline of the Proof of the Effectiveness Theorem

The proof of the effectiveness theorems consists in giving an algorithm which
decides whether or not CQ ~ e,\ £ A+(Ma) given an oracle for Th°(2l), and of
course verifying the correctness of this algorithm. The algorithm is naturally
divided into two parts, the first part is independent of ~, while the second is ~-
specific. Before we begin with the first step we give a brief outline of these two
steps.

1. This stage is best described as a symbolic evaluation. We reduce a term e(x)
to a finite set describing all its possible answers, in a suitably abstract fashion.
We call these answers symbolic answers; the fact that there are only a finite
number of them allows us to effectively proceed to the second stage. The
symbolic reduction relation, >s, is defined on triples, e ; g ; II, called sym-
bolic descriptions, these being the symbolic counterpart of a memory object
description, e is as usual simply an expression, g is a partial memory schema
and II is a set of quantifier free formula from £a. The symbolic answers are
then just irreducible symbolic descriptions. They are of the form v ; g ; H where
v is either a cell or else a term in 21.



128 The Effectiveness Theorems

2. The second stage is a type of pattern matching process. Given two of these
abstract answers we give an algorithm that decides whether or not these ab-
stract answers describe values that are always ~-related. As one would expect
the algorithm is simplest when ~ is ~ and most complex when ~ is =. This
is done by proving an algebraic relation on these partial answers and showing
that it corresponds in a natural sense (Lemma A4) to the equivalence relation
under consideration. The decidability of the algebraic relation together with
the fact there are only a finite number of these symbolic answers implies the
result.

5.2. Partial Memories and Memory Schemata

Before we can define symbolic descriptions and the symbolic reduction relation
we need to develop some notation. The principal concepts are those of a partial
memory and a partial memory schema. In a nutshell, a partial memory is simply
a memory that need not assign contents to every cell.

Definition: A partial memory is a finite function, /, with Sf C C and

The elements of Cells/ — Sf are called vague cells. Cells/ is the set

{c€C|(3cr),(3t>

A typical example of a partial memory is a function obtained from a memory
object by forgetting the contents of cells that occur at a certain depth. Most of
what we have done carries over immediately to partial memories; however they are
not the objects of primary interest. That title belongs to partial memory schemata;
these are simply partial memories in which one is allowed not only to store cells
and atoms but also elements of Term(2l).

Definition: A partial memory schema is a finite function, g, such that 8g C C
and for some a € A

/»9C(Terma(2l)®C)(2).

If we let Vg — a be all those variables that appear in locations in g, then we regard
g as a function from A'"' to the collection of all partial memories. To emphasize
this we will often write g(a). A memory fj, is said to be a completion of a partial
memory / iff / C ^. It is said to be a completion of a partial memory schema,
g(a), iff 3a 6 Alal such that p is a completion of g(a).

In the following we let v, v0, . . . , «„, . . . range over C ® Term(2l) (rather than
just V ), /, /0, /i , . . . range over partial memories and g, 0o, <h , • • • range over partial
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memory schemata. Notice that a partial memory is just a special partial memory
schema.

Definition: Supposing g is a partial memory schema, we define the sets

Cells9(w), Atomsj(v), Varss(v) and Valuess(i;)

in the following way:

1. Cells<,(u) is the set {c G CI (3a)(v ; g)a - c}.

2. Atomsj(w) is the set {u 6 Term(2t) I (3a)(v ; g}a = u}.

3. Varsj(v) is the set {a 6 A la occurs in Atoms9(v)}.

4. Values9(t;) = Cells9(»;) © Atomss(t>).

And assuming $ is one of Cells, Atoms, Values or Vars then we let

and by $,, we mean $g(6g). Using this notation we can now define:

Definition: A partial memory object is a pair [VQ,. . . ,vn-i] ; / such that /
is a partial memory and Vi 6 A © Cells/ for i £ n. A partial memory object
schema is a pair [VQ, . . . , vn_i] ; g(a) such that g(oi) is a partial memory schema
and Vi € Cells9 © Terma(2l) for i £ n. To emphasize that the sequence v may
also contain variables (from Vars9) we usually write u(a) ; g(a) to denote such
entities.

If v ; g is a partial memory object schema and n € M then we say that v ; g is
complete to a depth n iff for every a € ^(vi -g) with |a| < n we have that (v\,j • g]a

is not a vague cell. If v ; g is complete to a depth n for every n £ N then we simply
say that v • g is complete. Thus if v ; g(a) is complete and Cellsff = Cellsa(v)
then for any 5 £ A'"' we have that g(a) is a memory. In preparation to defining
symbolic descriptions and the symbolic reduction relation on them we extend the
operations in Oa to operations on partial memory objects schemata. Up until
now we have shown no interest in how the operation cons selects a new cell from
free storage. For purely technical reasons we no longer continue this practice.
To simplify matters we make the following innocuous assumption concerning the
behavior of cons .

Definition: Suppose that (7o><7i are two partial memory schemata and that
Cells 9o = Cells9l; then we will assume that cons(v0, vi) ; go and c<ms(v0,vi) ; g\
select the same cell from free storage. We also extend this assumption as follows:
suppose that cons(vo, Vi) ; / returns the new cell c and that fj. is a completion of /
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with the added property that c £ 6^. Then we shall also assume that cons(v0, «i);/z
returns the same cell c. We call this assumption the uniform cons property and
henceforth cons will be assumed to satisfy it.

Definition: The memory operations in Oa, other than eq, are extended to
partial memory object schemata in the following fashion.

<t>i(v ; g) = &("); g if t> e Term(2t).

R](v ; g) = flj(ij); 9 if v e Term(2t).

<fc(ii) and R](v) are complex terms unless v 6 A

;^ if,€Term(2l),
NIL; 0 if u 6 C.

; d) = c; ffo where c £ Cells,, and go = g{c+[v0, vi]}

car(c ; g) = v0 \ g given g(c)=[v0,Vi]

cdr(c ; g ) = V!;g given #(c) = [v0,vi]

If gr(c) = [VQ,VI] then

rp/actt(c,u;flr) = c;fl'o where jf0 = g{c+[v,vi}}

rplacd(c,v;g) = c;g0 where gf0 = g{c+[v0,v]}

5.3. The Symbolic Evaluation Relation »s

The time is ripe for us to launch into the details of the first step.

Definition: A partial memory object description schema, or symbolic descrip-
tion for short, is a triple

c(fi); g(a); II(S)

such that

« e(5) is an expression with no free variables from \ and c is the set of cells
that occur in e(a).

• g(a) is a partial memory schema such that c ; g is complete to a depth r(e).

• II(a) is a finite set of atomic and negated atomic £a formula, in the variables
5, consistent with Th(2t).

Note that since a partial memory object is a special partial memory object
schema (with II — 0), the above definition remains valid in this special case. But,
because of our conventions concerning meta-variables, when we say that

e;f
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is a symbolic description we mean not only that the above conditions hold, but
also that / is a partial memory object. The symbolic reduction relation is then
defined in an analogous fashion to the >• relation. Even though most of the results
in this chapter will pertain only to terms, we give the definition in the general case
supposing that D is some fixed definition. Relative to this fixed definition we
define >-s to be the smallest transitive relation containing —>>s. This in turn is
defined to be the the smallest relation closed under the following rules. In what
follows we use the word consistent to mean consistent with Th(2l). Recall that we
let v, UG, • • • , «n, • • • range over C ® Term(2l).

Definition: The single step symbolic reduction relation is defined to be the
smallest relation on symbolic descriptions satisfying the following conditions.

• Primitive cases:

{
NIL ; g ; E if VQ ^ i>i and Vg £ V,
T; g ; E if v0 = v1 and v0 £ V,
T ; g ; E+ if Vi £ Term(2l) and E+ is consistent,
NIL ; g • E~ if Vi £ Term(2t) and E~ is consistent,

where E+ = E U {v0 = vi} and E~ = E U {v0 ^ vi}.

In the last two clauses we assume that one of vg,vi is not in V .

{
eo ; g ; E if DO 7^ NIL and u0 € V,
ei ; g ; E if v0 = NIL and v0 £ V,
e0 ; g ; E+ if v0 £ Term(2l) and E+ is consistent,
e\ ; g ; E~ if VQ £ Term(2l) and E~ is consistent,

where E+ = E U {v0 =£ NIL} and E~ = E U {v0 = NIL}.

In the last two clauses we assume that one of VQ,V\ is not in V .

seq(e) ;g;TL -*>S e • g ; E

seq(u0, ei , . . . , em) ; g ; E -»>S seq^j,..., em) ; g ; E

«-Vi , . . . , y m +vm}e;g ;E -»s e{y\ +vi,... ,ym -<- vm} ; g ; E

i, • • •, vn) ; g • E —>> VQ ;go ;Ii

if j? is a memory operation and $([i>i,..., vn]; g) = vo ; go

tf(vi,...,vn);g;Il -K>s e{y\ •«- Vi,... ,yn +vn};g;U if i?( j / i , . . . , j /n)-«-e is in D.

• Congruence cases: If ea ; ffa ; na —>>s e\>; g ; Eh then

if (ea, Cjfeen, eelse) ! ffa ! Ha —>> if (fif,, ethen^elae) ', 9b ',

seq(ea,...); g& ; Ea -»>S seq(e6,...); ffb ; Hb
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let{yi -+vi,...,yj-i + V j - i , y j -*-ea,. . . ,ym + em}e ;#a ;II

let{yi +vi,..., yj-i -<- Vj-i , yj -<- et, . . . , j/m -<- em}e ; 0b ; n

. . , Vj-i , ea , . . . , em ) ; g& ; Ea -»
S i?(vi , . . . , Vj_i , eb, . . . , em )

We call Vi ; #,• ; Ej when t;,- € C ® Term(2l) a symbolic answer, and say e ; gr ; II
evaluates to f i ; ffi ; E; when e ; 0 ; II >s V{ ; g; ; Hi. It is important to note that
if ?? is a function from 21 and v £ Term(2t)l!>l then tf(v) ^ Term(2l) and i9(v) ; /i
will not denote. This explains the definition of a symbolic answer. Evaluation
is no longer functional since the primitive eg and if rules can allow two distinct
reductions. So suppose that Vi ; gt ; II,-, t £ / are the set of symbolic answers of
e ; g ; II (enumerated without repetition); then we can state several simple facts
that we leave for the reader to verify.

Exercises:

0. If CQ ; go ; HO — >>s ei ; gi ; HI, then e,\ ; g\ ; EI is a partial memory object
description scheme with the same vague cells.

1. If i,j € / are distinct then Hi and II j are tautologically inconsistent.

2. If e is a total term, or even simply total on completions of g, then

3. e ; g ; Hi ^>s Vi ; <?,- ; II,- and this is the only evaluation possible in this case.
This monotonicity property can be generalized as follows; suppose that

eo ; 9o ! H0 >
S ei ; gi ; EI

and that EO C E2 C EI C ES are all consistent with Th(2t), then

eo ; 9o ; E2 >
$ ei ; #1 ; EI

and
eo ; 9o ; E3 >

s ei ; 0i ; E3.

As we have already hinted, we will call these relations the monotonicity prop-
erties. They shall come in handy later.

We abbreviate e(a) ; g(a) ; 0 to e(a) ; g(a) so that a memory object descrip-
tion is just a special type of symbolic description, as is a partial memory object
description. Furthermore ^>s takes (partial) memory object descriptions to (par-
tial) memory object descriptions, and so, on these objects we write >> rather than
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;>s. The following is a simple consequence of the above definition and thus this
convention should cause no confusion.

Lemma Al: The following are equivalent:

2. e \n > v ;/z*.

One consequence of the uniform cons property is that it makes the statement
of the connection between symbolic evaluation on symbolic descriptions and partial
memory objects particularly simple, as the following lemma demonstrates.

Lemma A2: Suppose that e(a) ; g(a) ; II(a) >s v(a) ; go(a) ; n0(a). Then for
any a 6 A we have that:

21 1= Ho [5] -» e(a) ; g(a) »s w(a) ; g0(a).

The situation is not quite as simple in the case of partial memory object
descriptions and memory object descriptions, but here again the uniform cons
property comes to the rescue.

Lemma A3:

1. Suppose that e ; f ^> v ; /* and /z is a completion of / with the property
that Sp is disjoint from Sf* — 8f. Then there is a completion fj,* of /* such
that e ; JJL ~^> v ; fi* with the added properties that /j* = /j, on 8^ — Sf and
Sp* =6p® (Sf - Sf).

2. Suppose that e ; fj, ^> v ; /^*, /j is a completion of /, e ; / is a partial memory
object description and letting m = l^. — 5^| we have that

seq(cons(T, T), . . . , cons(T, T)) ; / > c ; /m

where the seq consists of m conses and 5M is disjoint from 6/m — Sf. Then
there exists an /* such that e ; / » v ; f* and n* is a completion of /*.

5.4. The Proofs of Theorems A and B

Theorem A: Aj(Ma) is recursive in Th°(2t), the quantifier free part of Th(2l).

We begin by defining the algebraic counterparts of the equivalence relations on
symbolic answers. In the following three definitions and, unless otherwise stated,
assume that

1. cj(fi) ; g(a) >s «j(o) ; #(5) ; Hi(a) for i e 2.
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2. Ilo(a) U Ui(a) U Th(2l) is consistent.

3. Vi = Cellsgi(6g *vi)-6g for i e 2.

The first relation we define is ~ since it is substantially simpler than the
remaining two.

Definition Al:(~) We define VQ ; go ; Ho — «i ; g\ ; HI via h to mean that,
putting Yi = Vi* Cells9,

h : Valuesso(r0) -» Values,^)

is such that it maps
Atoms9o(F0) -»• Atoms9l(Yi).

It is a bijection from
V0->Vi,

is the identity on Cells9, and Vc 6 Cells9 we also have h o (v<j ; #0) = (vi i <7i) and
ft o (c ; </o) = (c ; </i) as partial functions.

The next two are somewhat more complicated and we first define them when
neither Cells9o(t>o) nor Cells9l(7;i) contain any vague cells, and then extend the
definition to the general case.

Definition A2: (=*)

1. Suppose that neither Cells9o(vo) nor Cells9l (vi) contain any vague cells, then
we define VQ ; go ; HO = Vi ; <?i ; HI via h to mean

h : Values9o(v0) -+ ValuesSl(wi)

maps
Atoms9o(w0) —»Atoms9l(wi).

It is a bijection from

Cells go (v0 )-+Cells9l(Vi),

and h o (VQ ; g0) = (vi ; 31) as partial functions.

2. In the case when there are vague cells we define VQ ; go ; HO = v\ ; g\ ; HI via
h to mean that VQ ; go ; HO c± vi ; g\ ; EI via h.

Definition A3: (=)

1. Suppose that neither Cells9o(vo) nor Cells9l(t;i) contain any vague cells, then
we define v0 • g0 • TL0 = vi ; g\ ; III via h to mean

h : Atoms9o(vo) —* Atoms5l(vi)
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at (VQ ; go) and («i ; #1) have the same domain, call it Z. V<r 6 Z if
; 00)0- or (n ; gi)a is in Term(2t) then h((v0 ; 00)<r) = ("i ; g\)a 6

2. In the case where there are vague cells we define VQ ; go ', HO = t>i ; fl>i ; HI via
/i to mean, putting Yj- = Vj * Cellss,

is such that
either (v0

Th(2l)

h : AtomSj0(Fo) — > Atoms9l(Yi)

is such that not only VQ ; go ; HO = «i ; gi ; IIj via ft in the sense of 1. above
but also c ; 0o ! HO = c ; #1 ; HI via h for every c £ Cells9, again in the sense
of 1. above. Furthermore we require that if (v0 ; go)a (respectively (c ; ffo)<r)
is a vague cell then (v\ ; g\)a (respectively (c ; gi)a) is exactly the same cell,
and vice versa.

Remarks:

• Note that in each case h is unique and consequently we often simply write
Vo ;go ;Ho ~ v\ ;gi ;IIi and leave h implicit. We also write VQ ;</o ;IIo 7^ v\ ;gi ;IIi
when no such h exists.

• In each case it should be clear that the existence or non-existence of such an
h is recursive in Th°(2l). In the case of = the result at the end of 3.1 is useful
since it extends easily to partial memory objects.

Definition A4: Suppose that v0 ; g0 ; EQ ~ ui ; g\ ; HI via h then we define

T(h)

to be the set
{t0 = ti \ti e Term(2l) A h(t0) = fj}.

Lemma A4: Suppose that

. e,-(a) ; g(a) >s
 Vi(a) ; #(«) ! n''(«) for * 6 2-

. a e Alal is such that 21 (= (H0 U ni)[a],

then the following are equivalent

1. WQ ; ffo ; HO ~ vi ; ffi ; HI via ft and 21 f= F(ft)[a]

2. For any completion, fj,, of g(a) we have eo(a) ; (J, ~ ei(a) ; /z.

Proof of Lemma A4: The lemma is naturally divided into three cases de-
pending on which equivalence relation it is stated for. The first two cases, being
s; and = in that order, we do in detail and leave the third as an exercise for the
reader.
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Case 1. Strong Isomorphism: Assume the hypotheses of the lemma for
a 6 Al f i l ; we must prove two things and begin by proving that 1. implies 2.

1. —> 2.: By lemma A2 we have that ej(a) ; g(a) > Vi(a); <?;(a), i £ 2. It now
clearly suffices to prove that 2. holds for any n such that 8^ is disjoint from 6gi -Sg.
Thus choose such a fj,. Consequently by lemma A3 there exists completions ^i of
<7,-(a) such that

2. ^ = fi on 6,1 — Sg

Now the assumption that vo(a) • go(a) ; HO ~ ^(a) ; gi(a); HI via ft induces
a map

ft*: Valuesso(a)(v0(a) * 6,) -> Values,l(s)(t;i(a) * Sg)

such that ft* maps VQ to Vi and is the identity on Cellsff. Furthermore the as-
sumption that

implies that ft* is the identity on Atomsffo(a)(vo(a) * Sg) which is thus the same
as AtomsSl(a)(t;i(a) * Sg). Now extend ft* so that it is not only the identity on
A but also on 8^ — Sg. The resulting map, which we will continue to call ft*, is
a bijection by the assumption that 6^ is disjoint from 8gi — Sg. It is now routine
to show that Vo(ez) * 8p ; Ho = v\(a) * Sp ; Hi via ft* is a consequence of 2. and 3.
above. Di._>2.

2. —> 1.: This direction is almost immediate. Choose /LJ to be the completion
of g(a) that assigns to any vague cell in g the value [NIL, NIL]. The fact that
eo(a)\n ~ e\(a)\fj. via ft*, say, and the uniqueness of any ft satisfying the first part
of 1. is easily seen to imply two things. Firstly, there is such an ft. Secondly, 211=
F(ft)[a], sincee ft must induce ft*, which is the identity on AtomsSo(a)(tio(a) * 8g).

Case 2. Lisp Isomorphism: The case where there are no vague cells presents
no challenge. For assume the hypotheses of the lemma. Then by lemma A2 we
have that e;(a); g(a) > Vj(a); <jr;(a), i £ 2; furthermore choosing n such that tip
is disjoint from Sgi —Sg,-we have by lemma A3 that there exists completions m of
<7i(a) such that

1. e,-(a); \i ^> «i(a); \i\

2. m = fj, on 6^ — Sg

3. Oj,; = 8^ ® ((50,. — ̂ </)-

Furthermore, since there are no vague cells,



The Proofs of Theorems A and B 137

4. (vi(a) ; ffi(a)) = (vi(a) ; //i) as partial functions.

These, particularly the latter, force the desired equivalence, as the reader can
easily verify for themselves. Consequently we only concentrate on the cases when
there are vague cells. In this case we have already proved that 1. implies 2. when
~ is cz, and thus we need only prove that 2. implies 1. when there are vague cells.
So suppose that CellSj0(a)(uo(5)) contains vague cells and that 2. is true. Let

C f l , . . . ,Cm

be all the vague cells in g and assume without loss of generality that

c0 G Cells go(-a)(v0(a)).

Now choose distinct atoms
bo,...,bm

such that (Vi < m) &,• ^ Atomsso(8), and supposing that Cells9 = [c*,...,Cj],
where k — |Cellss|, choose distinct cells

disjoint from Cells5o U Cells9l . Now consider the completion, /z, of g(a) which
satisfies the following:

= [cm+i,60]

i) = [bi, bi] for 1 < i < m

= [c*,cm+i+i] for 1 < i < k

The structure of /z on 6p — 6g is illustrated in figure 12. Now by lemma A3
there exists completions /^ of 0,-(a) such that

2. m — fj. on 8^ — Sg

3. «„,=«„©(«„-«,) .

Furthermore since eo(a) ; p = ei(a) ; /j, we have that there exists an h such
that h : vQ(a) ; fi0 ~ vi(a) ; /zi, and because c0 € Cells9o(i;o) we know that
CD € Cellsffl(ui). Also by the choice of b0, h(c0) = c0. Further by the second
consequence of lemma A3 above and by the choice of the 6,- we must have that
h(a) = a for 0 < i < m + k. This in turn implies that h(c*) = c* and thus the
desired conclusion follows routinely. P2.-.1. Ctease 2.
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61 f
bm

•NIL

LJJcj LU LU-

Figure 12. The Structure of /j, on S,, —

As already mentioned we leave the proof of the third case, i.e. when ~ is =,
to the reader. Thus we have proved what we have claimed. PLemma A4

Definition A5: Call a collection

exhaustive if for each i, j € / we have that v;(a) ; gi(a) is a partial memory object
schema, \Vi\ = \Vj\, and for every v\n 6 ya such that |v| = |v;| we have that 3a £ A
and 3z £ I and a completion, //;, of gi(a) with the property that v ; fj, = Vi(a] ; //j.

Proof of Theorem A: Now given e.j(x) £ E<a, j 6 2, choose a finite exhaustive
set of partial memory object schemata

such that for each i 6 I we have that J}i(d) ; gi(a) is complete to a depth
Max{r(e0),r(ei)}, and |x| = |ui|. Let

be the set of all symbolic answers of ej(vi(a)) ; gi(a) Clearly the sets
The first thing to observe is that

are finite.

fi)( V V

is equivalent to the fact that for any v ; fi £ MJ^' eo(u) ; /^ will denote iff ei(v) ; \i
denotes. Consequently we can assume that for each fco 6 KM there is a k\ £ KH
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such that n*0° Lin*j is consistent with Th°(2l) and visa versa, for otherwise CQ ~ e\
would have no hope of being true. Thus to check whether

we need only check for each i £ J, ko £ Kio and ki £ KH such that Ilf0
0 U 11,-j is

consistent with Th°(2l) whether or not

Qrheorem A

As a corollary to the proof of Theorem A we now prove the unbounded iso-
morphism theorem.

Theorem B: If ej(x),i £ 2 are primitive terms such that

e0(x) = ei(x)

and the ej(x) are unbounded, then there is a term 0(x) which is total on M]J and
takes only the values T or NIL such that

1. e0(z) ~ e i ( x ) on {v ; /z | 0 ( v ) ; (J. > T ; /i}

2. e;(x) is bounded on {v ; ̂  | 0(v) ; ̂  > NIL ; p}

Remarks:

• Actually the term 6(x) does not contain the operations cons, rplacd or rplaca
and so we have for any u;/z £ Mseip'1' that 9(v);n > T;/i or 0(v);^ > NIL;^.

• 1. can be stated equivalently as if(^(x),e0(x),T) ~ if(^(5),e!(x),T)

• 2. can also be stated as if(0(z),T, e,-(x)) is bounded.

• Also note that as a consequence we also have that 6(x) evaluates to the value
T for arbitrarily large arguments, or in symbols

(Vn £ N)(3« ; p £ Msezp)(8(v); p > T ; /z) A (|CelIs^(t;)| > n).

• Finally, it also falls out of the proof that on {v;[i \ 6(v)\fj, ~^> NIL;/z} the possi-
ble values of e;(a;) are bounded by n = 2m +m, where m = Max;£2{Ke,-(i))}.

Another corollary of the proof is the following criteria for a term to be un-
bounded.
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Corollary: If e(x) is a term and for some v ; p. we have that e(v) ;
with

then e(x) is unbounded.

Proof of Theorem B: Suppose that eo(x) = ei(x) and choose a finite exhaus-
tive set of partial memory object schemata {vi(a) ; j7j(a)}ig/ that are complete to
a depth Max{r(e0),r(ei)} and assume that e,-(vj);0i >s {ufc-,0* ',H-k}k€Kij • The
first thing to observe is that

fi)(( V ( A n*o ))«=*( V

since CQ is defined exactly when e\ is. Refine these answers, using the monotonicity
properties of »s, to sets {v}

k ; g'k ; Hk}keKi, for j,i € 2. So that ej(vi) ; ̂  ; Hi >s

w^ ; <?£ ; Eft for any k £ JiCj. Now let 6(x) be any total ya term such that the
following are equivalent:

1. 0(w) ; p > T ; p.

2. 3i 6 J, 3a £ Al a l , 3fc 6 Kf such that

• 21 H nt[a].

• v ; n is a completion of Vi(a) ; Jf.(a).

• Cells j (v^) contains vague cells.

Such a term, indeed actually a predicate in the sense of chapter 3, is easily con-
structed by examining the symbolic answers

(vk i 9k ) Kk}k€Ki,i€I,j£2-

It is then a simple application of lemma A4 to show that, for such 6:

Lemma Bl: if(0(z),e0(z),T) ~ if(0(z),ei(z),T).

Drheorem B
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5.5. The Proof of Theorem C

Theorem C: For every n e N we have that Th^Mla) is recursive in Th"(2l).

The first result needed in the proof is the following converse to lemma A4.
It is important to note that this result does not hold for either of the extensional
equivalence relations.

Lemma Cl: Suppose that

. cj(a) ; g(a) >s Vi(a) ; #(a) ; Ilj(a) for i e 2.

. v0 ; g-o ; n0 ^ vi ; 31 ; HI

. a 6 A'al is such that 21 ̂  (H0 U Hi)[a]

then for any completion, fj,, of g(a) we have eo(a) ; fj. $£ e\(a) ; /z.

Proof of Lemma Cl: It is easy to show that eo(a) ; n ~ e\(ja) ; fj, implies that
VQ ; g0 ; HO ~ vi ; g\ ; HI when a e Alal is such that 21 1= (IIo U IIi)[a]. We leave it
to the reader to work out the details. PLemma ci

Lemma C2: Let t be the term rank of <j>[x] G £~, v ; fi 6 MJ^' and take /
to be a partial memory such that (vj.^ ; fj)a = (wj,j ; /)CT, for any |cr| < <; also for
simplicity assume that n is a completion of /, then the following are equivalent

2. / N m,
here we define / (= <j>[v] to mean that every completion, fio, of / satisfies fj,Q J= </>[v].

Proof of Lemma C2: Clearly 2. implies 1. consequently we need only prove
that 1. implies 2. This is done by induction on the complexity of </>.

Base Case: Suppose that </> is e0 ^ e.\ and that n \= <f>[v]. We shall leave the
case when neither eo(v) ; /z nor ej(v) ; // denote as an exercise. It is a simpler
application of lemma A3 than the one we consider. Consequently we shall assume
that

ei(v);n > Wi;m,i €2.

Let M = Maxie2|^/if — £/i| and without loss of generality assume that

eq(cons(T,T), . . . , cons(T,T)) ; / > c ; fM
*

se

M conaea

and that <$M is disjoint from 6jM —6f. Consequently by lemma A3 there are /;, i £ 2
such that

ej(»);/ >«;,•;/<,$ €2,
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and fJ,i is a completion of /;. This step required the initial assumption on v ; / to
ensure that e,-(v);/ was a partial memory object description. Now since eo(v);fj, ~
e\(v) ; n there exists an h:V — > V a bijection which is the identity on A U 6^ such
that

1. h :w0;no = wi ; /^i,

2. h : tip ;fj,0 = <^ ;^i-

Let h* be the restriction of h to A U 6/ and choose /j,* to be any completion
of / with 8,1* disjoint from SfM . Again by lemma A3 we have that there exists fi* ,
completions of /* , such that

Put

{ h* on Oft.
id on 6^* — 8f0

g elsewhere.

where g is any bijection from the free storage of pj to the free storage //J and id
is the identity. It is then routine to show that

1. h** :WQ;VQ = W!;nl,

2. /i** : o> ; n*0 £ «„. ; p*.

PBase Case.

Induction Case: The boolean cases are, as usual, immediate. Thus we are left
with the case when

Suppose that n (= Bxi/'tu]. Then there is a //* 3 ^ and a it) G A U S^ such that
fj,* j= ip[w* * v]. Let /* be the following extension of /:

Sf. = 6f U {c | 3<r|a| <t A ( w ; y*}a = c}

and /* = n* on Sf . By the induction hypothesis we have that /* \= ip[w* *v}. It
is then routine to show that / |= 3xt/>[v}. DLemma 02

Lemma C3: Suppose that <j>[x\ G £S is a formula of term rank t and quantifier
rank n, u(S) ; g(a) is complete to a depth t. Then we can effectively find a finite
set, n(a), of formulas from £a of alternation rank n such that the following are

equivalent for any a £ A I "I:

2. ff(a) |= ^[r(a)].
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Proof of Lemma C3: The proof is by induction on the complexity of <j>,
beginning with the case when ^ is e0 ~ e\. Assume that ej(v) ; g >s {vt ; gk ',

, for j <E 2. For each j0, ji with jt & Kt let Tjojl be /\T(h) if

vjo ; 9k ; nj<> - vn ; 9h ; nji via h

and a0 ^ a0 otherwise. Finally putting

n= V ( ( A n * o ) A ( A n * i ) A r f c o t l ) ) v x V

we have the desired result. The boolean cases are again omitted because of their
triviality. We finish off by doing the case when <$> is By^S an<3 ̂  ls of less alternation
rank. The general case when <j> is 3y«/> is just as simple, modulo a mess of notation.
Let

w0 ; g0(a * a*), ...,wd; gd(a * a*)

be such that

2. Wi ; gi is complete to a depth t,

3. For any a, p and w 6 A U 8^ with ft 3 ^(5) there is a g3 and a a* such that n
is (isomorphic to) a completion of g3(a * a*).

Now by induction let 11̂  be the set of formulas obtained for i[>(y,x) and
w>s * v ; gs(a * a*). The desired formula is then just:

3a*(n0 V IIj V ... V Ud)

PLemma C3 dTheorem C

5.6. The Proof of Theorem D

Theorem D: Regardless of the complexity of Th(2t), when ~ is either != or =
we can interpret true arithmetic in Th^(IU!a). Consequently Th^(Ma) is exactly
AJ in Th(2l).

We prove the theorem for C* ; exactly the same proof works for £? . To prove
that we can interpret true arithmetic in Tha(Ma) we define the relation xEy as
follows. It is always false when y is an atom. Supposing that y is a cell, then xEy
abbreviates the conjunction of the following two sentences:
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1. atom(x) ~ NIL implies

2. atom(x) ~ T implies

(3w)(atom(w) S NIL A wEy A (eq(car(w), x) ^ T V eq(cdr(w),x) £ T)).

Lemma Dl: The following axe equivalent

1. H\= (xoEx^voiCi]

2. VQ is an element of Values,j(ci).

Thus xEy expresses the fact x is a substructure of y. The idea is now quite
simple. We shall identify the integer n with anything isomorphic to the value of

Iet{x0

-4-cons(x0,x0)}

making the convention that the number 0 is identified with NIL. The first thing to
observe is that if x represents the integer n then cons(x, x) represents the integer
n + 1. Also notice that equality, between representations of numbers, is simply
S . Expressing that z represents the sum of a: and y is achieved by saying 3w such
that w = z, yEw, and either a; = NIL and z = y or else (x ^ NIL) and

(3uEw)(car(u) S y A a; = seq(rp/aca((rp/ac<f(u,NIL),NIL),«;).

What remains is for us to show that we can recognize those objects representing
numbers and that we can express that the representation of one number is the
product of the representation of two others. The first is trivial since x represents
a number iff either

or else

NIL E x A Vy(y£x -> (y S NIL V eg(car(y),cdr(y)) S T)).

We abbreviate this formula by int(x). To express multiplication we need to develop
a little notation. We write a; = y to mean that eq(x, y) = T, and x f~l y = 0 to mean

-3z(atam(z) ^ NIL A zEx A zEy).
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Now supposing that x and y represent numbers, we write

z : x -» y

to mean that z codes up a function from x + 1 to y + l. We express it by saying that
Vzo such that atom(xo) — NIL and xoEx, there exists a unique z$Ez such that
car(zo) = XQ and cdr(zo)Ey. It is an easy exercise to show that we can also express
that such a z in fact codes up an injection from x to y. Given that z : x — > y is true
we write Z(XQ) to denote the cdr of the unique zoEz that satisfies car(zo) — XQ
for any xoEx. The predicate ®(xm,xn,xmxn) is defined to express:

0. xm,xn and xm x n all represent numbers.

1. xm ,xn and xm Xn share no cells with one another. This is done by using the
predicate x fl y = 0.

2. 3z : xm -4 xm Xn such that the following hold

z is an injection,

xn * seq(rplaca(rplacd(z(cdr(xm)),KL),-KIL),z(xm}),

(3yExm)(y = 1 A cdr(z(y)) = xn),

And finally (Vyo,yiExm)((y0 = yi + 1 A y0 ^ xm) -»

xn S

The situation so described is illustrated in figure 13.

Lemma D2 : z represents the product of the representations x and y iff 30o , XQ , yo
such that 0 = ZQ,X = x0 ,y = yo and

Drheorem D
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NIL

NIL

NIL

Figure 13. The Structure of z and xm,xn,xmxn
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5.7. Previous Results

As we mentioned earlier the underlying data structure of pure Lisp can be
thought of as a traditional first order structure:

< §«;/, cons, car, cdr, atom, equal,T,1iIL > .

It is thus a static object with quite nice properties. For example the theory of
this structure has been shown to be decidable , (Tenney, 1972), (McKinsey and
Tarski, 1946). Also in (Oppen, 1978) it is shown that the quantifier free part of
this theory is decidable in linear time. Before we deal in any depth with the results
of Oppen, and of Nelson and Oppen, (Nelson and Oppen, 1978a and 1978b), we
shall generalize the decidability result above.

Definition: We define dfure as follows. £*ure is a restricted version of £?. We
let

°*«re = {atom, atom:eq, cons, car, cdr, <j>0, . . . <j>n,Rl, . . . lfm}.

The language of £*ure is then restricted to those expressions of £? that only
contain operations from O^Kre. The quantifiers are similarly restricted to Mwf.
We then define Thpur.e(Mla) to be the set of sentences true in this fragment of £?.
The generalization of the above decidability result is simply stated as:

Theorem: Thpure(Ma) is recursive in Th(2l).

We begin by eliminating the need to consider the control primitives; seq, let
and if. Firstly we define

z(e = x).

Notice that the following schemata are valid in £%ure :

1. Iet0<:<n{j/i -<-6i}e = e{yt -«- ej}o<,-<n where the R.H.S. denotes the expres-
sion obtained by simultaneously replacing free occurences of j/,- by e* in e,
provided that e,-J, for 0 < j < n.

2. -"(leto<i<n{yi -+ei}e)l whenever there is an 0 < i < n such that ->(ei|).

3. seq(e0, . . . , en) = en, as long as e0|, . . . en-\ {

4. -i(seq(e0, . . . , en)j), whenever there is an 0 < i < n such that --(eij,).

5. -i(if (60,61,62)!), whenever -i(e0|).

6. if (60,61,62) = 61 whenever eoi and eo ̂  NIL.

7. if(e0,ei,e2) = e2 whenever eo = NIL.
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As we mentioned in Chapter 3 an equational theory for if can be given. For
explicit results see (Bloom and Tindell, 1983) or (Guessarian and Meseguer, 1985).
To state this equational theory we let

J_ = car(T).

The rules of equational deduction are simply reflexivity, symmetry, transitivity,
compatability with the operations, and full invariance; see (Bloom and Tindell,
1983). In their system, however, if is defined somewhat differently, namely

(z if x = NIL
if(z,y,z) = < y if x = T

I ± otherwise

In other words to reduce our if to theirs we simply restrict ourselves to instances
of the form

ifn(e9(x,NIL),y,z).

The axioms are then easily stated:

8. if(T,x,y) = x

9. if(x,x,y) = if(z,T,y)

10. i f ( N I L , x , y ) E E y

11. if(x,y,x) = if(a:,y,NIL)

12. if(±,x,y) = ±

13. if(x,±,±) = l

14. Premise Interchange Axiom:

if (x, if (y, z, u), if (y, v, w)) = if (y, if (x, z, v), if (x, u, w)).

15. Redundancy Axiom:

if(z,if(x,y,z),u)) = if(x,y,w).

16. Redundancy Axiom:

if(z,y,if(x,y,w>)) = if(x,y,w).

17. Premise Simplification Axiom:
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The facts 1. through 7. together with the observation that

->(e|) <£=*• (e = car(T)),

provides us with a simple method of defining a translation, F, from £^ure — >
such that T(<j>) contains none of the above control primitives and

(T(<j,) «-> # € Thpure(ya).

It suffices as a consequence of the above that we need only show that the first-order
theory of

< §u>/, <t>o, • • • > <^n, RO, • • • , #m> cons i car» c<^r> o<ora, T, NIL

is recursive in the first order theory of

Rather than prove this directly it is much more convenient to prove:

Theorem: The first-order theory of

< §«,/, <i>o, • • • ,<t>*n, R*o, • • • , R*m, cons, car, cdr, atom, T, NIL >

is recursive in the first order theory of

both structures being regarded a relational.

This theorem follows from the following decomposition theorem. Suppose that
i^is an operation on relational structures, such that if 21 is a r-structure then 1̂ (21)
is a (TF U restructure with the following properties:

1. A, the domain of 21, is a unary relation in 5(21). In what follows we will write
Ax to abbreviate the conjunction of Axi for 0 < i < |x|.

2. A is a set of total indiscernables in 5(21)1 ,̂ see (Chang and Keisler, 1973)
page 414.

3. 21 is a submodel of 5"(2l)|r.

4. If e £ r then

(Vx,y)( Q(x) = y -» (Ax A

as a relation
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Theorem: Th(#(2l)) is recursive in the two theories Th(2l) and Th(#(2t)iTp ).

Proof of Theorem: Let T be the following theory

1. Th(£(2l)lrF,aTF-theory.

2. Th(2l)|A, a (T U {A})-theory.

3. {(Vx)(Rx -» Ax) | R e r} , a (T U {A})-theory.

Here Th(2t)|j4 is the set of sentences obtained from Th(2l) by relativizing all
quantifiers to A. Let TO be the axioms given by 1, and let TI be those of 2, 3, and
those of TO that are in the language {A}. Thus putting TO = rp and TI = r U {A}
we have that Tj is a complete T^-theory. We now show that T = TO U TI is a
complete (TO U Ti)-theory. Clearly it is recursive in the two theories Th(2l) and

Let A^(si) denote the formula expressing that Ax as well as the fact that
the x are distinct. Also let A^(x) denote the formula expressing that -<Axi for
0 < i < \x\, as well as the fact that the x are distinct.

Lemma: If </>,-(x,y) is a quantifier free TJ formula, for i 6 2 and

T h (32y)(A^(x) A A^(y) A fc(x,y))

for i 6 2, then

Th (3xy&A(x) A A^(y A < ^ o x , y ) A &*,y)) .

Proof of Lemma: By completeness we have

Ti h (3iy)(AA(i) A A^(y) A ^(x,

and by the indiscernability of A we have that

To h (Vx)(3y)(AA(x) -» (A^(y) A ^o(

Furthermore if 95 |= TI and 60, &i are such that

58 h A^ft)

for i 6^ 2 then there is an automorphism of 58 which is the identity on A and maps
60 to &i . Thus

Tx h (
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Since
T h (3x)AA(x)

and

the result follows. QLemma.

The proof of the Theorem is now quite straightforward. Firstly observe that

Lemma: If Q$0 and 53j are both models of T then

Th(»o)fl.UD(»i)Bl

is consistent. Here D(9S)s is the diagram of 35.

Proof of Lemma: By compactness it suffices to prove that if 25o |= $ and
58i |= (3z)<f>(z), where <j>(x) is the conjunction of atomic and negated atomic
formula, then if> A (3z)^(z) is consistent. It now suffices to prove that

Split ^ into 4>0(x,y) and <^i(x,y) such that

»! h(35y)(AA(S) A A^(y) A fa(x,y) A

and

»! h (3xy)(AA(x) A A^(y) A <f>0(x,y] A fc(x,y

Thus
»! |= (3xy)(AA(x) A

and
x) A

and the previous lemma gives the result.

The theorem is then proven by simply constructing an alternating chain of
models. Drheorem

That the first order theory of

< §„,/, cons, car, cdr, atom, equal,!:, NIL >

is decidable does not immediately carry over to the non-well-founded case. The
acyclicity plays an important role, since it is a well known result that the theory
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of a pairing function is undecidable. By a pairing function we simply mean a
function, which we shall call cons, that satisfies the axioms

(V0)(3x, y)(cons(x, y) = z),

(Vz, y, w, z)(cons(x, y) — cons(w, z) -» (x = w A y = z ) ) .

The work of Nelson and Oppen, (Oppen, 1978), (Nelson and Oppen, 1978a) and
(Nelson and Oppen, 1978b), bridges this gap somewhat by studying quantifier free
variations on this theory. Note that in the above theory the functions car and cdr
are definable using quantifiers. For this and other reasons we include the functions
explicitly in the quantifier free case. If we included them in the above system, the
relevant axioms would be

(Vx)(cons(car(:r),c<fr(x)) = x)

(Vx, y)(car(cons(x, y)) - x)

(Vx,y)(cdr(cons(x,y)) = y).

The relation atom! and the constant NIL also appear in the variations. We shall
use equality to mean Lisp equality in the following sentences. In (Nelson and
Oppen, 1978a) they give a decision procedure for the following set of axioms

car(cons(x, y)) = x

cdr(cons(x,y)) = y

->atom?(x) -» cons(car(x),cdr(x)) = x

-iatomt(cons(x, y)).

Note that the axioms do not restrict the semantics to acyclic objects, so that a
formula like

car(x) = x

is satisfiable. The decision procedure is based on determining the congruence
closure of an equivalence relation ~ on a directed graph with labeled vertices.
It decides a conjunction of n atomic and negated atomic formula in 0(n?) time.
They also show that when the result of applying either car or cdr to an atom is
specified the problem (of deciding a conjunction of n atomic and negated atomic
formula) then becomes NP complete. For this last result the axioms they consider
are

car(cons(x, y)) = x

cdr(cons(x, y)) = y
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x ^ NIL —» cons(car(x), cdr(x)) — x

cons(x,y) ^ NIL.

On the other hand, when one adds axioms of acyclicity to the basic group a linear
decision procedure is possible. The acyclicity axioms are all those formulas of the
form

6(x) £ x

where 0 is any finite composition of the selector functions car and cdr.

5.7.1. Open Problems

Two related problems which we have not answered here are

1. Is Thl(Ma) recursive in Th°(2l), for ~ either = or £*?

2. Is Tht(Ma) recursive in Th°(2l), for ~ either = or ^, where Tht(Ma) is
the positive universal fragment



Chapter 6

Fragments of Lisp

In this chapter we use the equivalence relations to study the fragments of
first-order Lisp introduced earlier. Recall that we defined three different sets of
memory operations on Maexp, namely

®«ezp — {int, atom, addl, subl, eq, cons, car, cdr, rplaca, rplacd}

Opure = {int, atom, addl, subl, atom-.eq, cons, car, cdr}

®pure+ = {int, atom, addl, subl, eq, cons, car, cdr}

As usual we shall denote the memory structure with operations ®aexp simply
by Mseip- To remind the reader we call the memory structure that has operations
®Pure the pure Lisp memory structure and denote it by Mpure. The memory
structure with operations OpUre+ is denoted by Mpure+. Recall that the following
program defines eq in terms of atom:eq, atom and rplaca, thus these are the only
natural fragments.

defined:eq('x.,y) «—

if(or(aiom(x), atom(y)),

atom:eq(x.,y),

let{oldx -<- car(x), oldy -<- cor-(y)}

seq(rp/aca(x,T),

rplaca(y, NIL),

let{answer -<- atom:eq(car(x), car(y))}

seq(ry/oca(x, oldx),

rplaca(y, oldy),

answer)))
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Notice that these memory structures all have the same set of memories, con-
sequently a simple comparison of functions definable in each structure is possible.
In this section we examine some aspects of this comparison. We can summarize
our results as follows. Firstly we show that any function definable in one of these
fragments can actually be defined in any other fragment unless there is an obvious
reason preventing this. There are only two such reasons. This result gives em-
phasis to the practical observation that the use of eq usually only increases speed,
while the use of rplaca and rplacd improves space.

Secondly we relate the two equivalence relations, isomorphism and Lisp equal-
ity, on Maexp to these fragments. We show that they are related in the sense that
the behavior of a function in one of these fragments depends only on the equiv-
alence class(es) of its arguments, for the appropriate equivalence relation. In
the case of Mpure the appropriate relation is Lisp equality, while for Mpure+ and
Msexp it is isomorphism. In the Mpure case this indiscernability with respect to
Lisp equality has many consequences. Because of the weakness of the equivalence
relation one can define a natural non-trivial topology on the quotient space. Using
this topology we can then prove two things. The first is that any purely defin-
able function is continuous with respect to this topology; this has the immediate
consequence of excluding many well-known functions from being purely definable.
The second result in effect demonstrates that pure functions are essentially triv-
ial on non well-founded objects, in that they are definable without recursion in
an open neighborhood of any point. This again has the immediate consequence
of excluding many functions from the already shrinking class of purely definable
functions.

6.1. Equivalence Relations Revisited

We now give more model theoretic definitions of the two extensional equiv-
alence relations . This is done by showing that they are maximal equivalence
relations that are indiscernable with respect to the behavior of the functions de-
fined in these fragments. In the following discussion L is either pure, pure~*~ or
sexp.

Definition: An equivalence relation on MI , ~, is said to be an L-congruence
if the following two conditions are met:

• (Va0,a! e A) ((a0 ; j/o ~ «i ; /^i) -»• (ao =ai))-

• If i? is a unary function defined in the L-definition D and VQ ; //o ~ "i; Mi then
whenever
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we must have that 3 w\ ; /j,* with

and

u>0 ; Ho ~ wi ; H*.

An L-congruence is thus an equivalence relation that is simply equality on
A and has the added property that unary L-functions preserve the relation. The
model-theoretic definition of Lisp equality and isomorphism begins with the fol-
lowing observation.

Fact 2: There is a maximum L-congruence, which we denote by =L-

Theorem: =pure is simply Lisp equality while =pure+ and =3exp are just iso-
morphism.

Proof of Theorem: The fact that =pure+ and =3ezp are just = follows easily
from the proposition in 3.1. The proof for Lisp equality we delay until the next
section. Dxheorem

Recall that in Chapter 3 we proved two results. The first stated that isomor-
phism was roughly the smallest equivalence relation extending equality on atoms
that was preserved by the destructive Lisp operations. The second stated that
strong isomorphism was the weakest equivalence relation extending Lisp equality
that had a substitution theorem. A similar result holds for Lisp equality, namely

Theorem: Restricting ourselves to Mpure, suppose that ~ is an equivalence
relation on memory objects, memory object descriptions and expressions such
that:

0. eo(«o) ; l*o ~ ei(vo) ! l*o implies that either both sides fail to denote, or else
they denote memory objects which are ~-related.

1. (Vv ; fi € Mpure)(eo(w) ; /z ~ &i(v) ; /z) <=> e0(x) ~ e^x).

2. (Va0 ,ai 6 A) ((a0 ;/z0 ~ ai ; / / i) -» (a0 = ax)).

3. The relation ~ satisfies Leibniz's Law Suppose that eo(x),e1(s),e(s,y)
Mpure. Then

e0(x) ~ ei(x) -»• e(x,e0(5)) ~ e(x,ei(x).

Then

eo ~ e-i -> e0 = ei.
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6.2. The Structure of Mpure Definable Functions

We now concentrate on Mwf beginning with the following two remarks. Mw/
factored out by =, which we denote by §«,/, is canonically isomorphic to the
structure one obtains by closing A under a pairing operation; see for example
(Moschovakis, 1969). Hence the celebrated isomorphism

§„,/£* A ©(§„,/<g> §„,/).

Secondly, for any memory object v ; n € Mwf there is a closed Mpure term e, i.e
one with no free variables, which contains only the operation cons, and of course
no function symbols, such that e; 0 > v*; n* and v; fi = v* ; //*. Here 0 denotes the
empty memory. If we do not include the let construct in the set of terms, then
we can only obtain = in this last result. Note that this result essentially means
that the Skolem hull of Mpure or Mpure+ over A , being those objects constructible
by terms with constants from A , is Mw/.

Fact 3: The following are equivalent.

1. v0 ;no e Mwf

2. There is a closed term e.g in Mpure such that

eo ; 0 > vi ; /^i = v0 • [j,0

3. There is a closed term ea in Mpure+ such that

£0 ; 0 > v\ ; Hi = v0 ; HQ

Proof of 1. -> 2.:

Choose VQ • pa £ Mwf. We prove this direction by induction on the number of
shared cells in Cells/(0(uo), a shared cell being simply a cell c 6 C for which there
is more than one a E ^(PO;^O) such that (VQ ; ^o)er = c.

Base Case: This itself is proved by induction on Cells/10(«o). The base case
is then when VQ e A and the corresponding term is simply the constant symbol
denoting VQ. The induction case is just as simple, letting va — (VQ ; /^o)o and
Vd — (VQ ; /XQ)I we can apply the induction hypothesis to obtain ea and e.d- The
required term is then cons(ea, e.^). It is because VQ ; no is well-founded and has no
shared structure that enables us to conclude that this term evaluates to a memory
object isomorphic to VQ ; /J,Q . DBase Case

Induction Step: Let the shared cells in v0 ; po be c0,... cn and assume that 1.
implies 2. for objects with less structure sharing. By well-foundedness at least one
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of the Cj is such that Cj £ Cells ̂ (cj) whenever j ^ j. Let Ck be one such cell and
let at be some atom that does not occur in «o ; A*o- Now let VQ ; /z* be the memory
object that is obtained by altering all the cells that contain Ck so that they now
contain ajt. The shared structure in v$ ; ̂ J is simply {cj \ j 6 n + l,j ^ k}. Thus
we can use the induction hypothesis to obtain e*. The required term is then

where ek is the term for cjt ; po and ej* is the term obtained by replacing all
occurences of dk by Xk- That this term has the desired property is easily derived
from the fact that e* works for VQ ; /z* .

2. — > 1.: This is a simple consequence of the fact that the pure memory
operations preserve well-foundedness. That 2 is equivalent to 3 we take as self-
evident. DFact 3.

Exercise: Remove the assumption that A is infinite from the above proof.

To prove the theorem following fact 2 and other results concerning the behav-
ior of Mpnre definable functions we need to develop some notation. In this section
we write e(v0, ... ,vn) to mean that the elements of V that occur in e are amongst
the vi. Sometimes we tacitly assume the converse, namely that every v; occurs in
e. We now define a finite approximation to the relation =, used in (Gordon, 1973)
to show that certain well known Lisp functions are not definable using a certain
List iteration functional; we shall use it in a slightly different manner to obtain
similar results.

Definition: For VQ,VI € V we say VQ is pointwise Lisp equal to v\ written,
VQ =o vi > iff either v0 and DI £ C or else VQ = v\ . Using this we define the notion
of v0 ; fJ.o being pointwise Lisp equal to a depth n, to mean that:

(V<r6 Uj€ 2^(» j ; M . ))( lCT| <n — > (u0 ;/^o)<r =o («i ; Pi)*)-

We denote Lisp equality to a depth n by

v0 ; ̂ 0 =„ ui ; m

and more generally if VQ = [v°, VQ , . . . , v™] and vi — [vj, v\ , . . . , uj71] then we write

to mean that wj ; ̂ o =n v{ ; m for every i € m + 1.

Definition: We define the quotient spaces §pure and Saezp as follows:
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itmxl. §pUre = Maexp/ = .
df

2. §aexp = M,exp/ 2 .
df

We now study §pure in a little more detail. Our first step is to define a
topology on it; this is done by providing the space with a metric.

/2\
Definition: Using =„ we can define a function d from y«exp to the reals, OS ,
as follows:

* . *-, _ f 0 if v ; /z = v* ; /z*
' [_ k~l if fc is the least n such that w ; // ^n t»* ; /z*

Notice that d is a metric on §pure, and a pseudo-metric on Msexp. With that
in mind we define the notion of an open ball. For any v* ; /z* and any e > 0 let

be the open ball of radius e centered at v* ; /z*. Sometimes we regard Ue(u* ; /z*) as
a subset of Msexp rather than a subset of §pure> context should prevent confusion.
By defining the distance between [vi, . . . , vn] ; \i and [uj , . . . , v*] ; n* to be

we obtain a metric for §p"re in the product topology.

As we have already remarked, §u,/ is canonically isomorphic to the struc-
ture one obtains by closing A under a pairing object in the Moschovakis style,
(Moschovakis, 1969). The functions that are induced on §„,/ by Mpure definable
functions are exactly the prime computable functions. Spure is another story, how-
ever. The equivalence classes of = on non well-founded objects are somewhat
richer than their well-founded counterparts. And the pure language is not strong
enough to define many functions. The next fact states some elementary properties
of the topology on Spure induced by the metric d.

Fact 4:

0. Spare is not complete with this metric and hence not compact.

1. §„;/ is the set of isolated points in S /)urf .

2. §„,/ is dense in §pure.

3. Spure - Su,/ is perfect, in other words it contains no isolated points.
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4. Spare is totally disconnected.

5. For any s € Spure and any e > 0 there is a k € N such that U£(s) is
homeomorphic to

Spare ® • • • ® Spure k times

in the product topology, ( here the empty product is taken to be the empty set).
Conversely for any k £ N there is an s E Spttre and an e > 0 such that Ue(s) is
homeomorphic to

Spare <8> • • • <8> Spare 2fc times.

Proof of Fact 4: The first follows from the simple observation that only a
finite number of atoms can occur in an element of Spure. To prove 1. choose any
v ; H that is well-founded and let k be the length of the longest element in 5(v;/J).
Then the only element of Spure in U(fc+i)-i(v; /z) is , the equivalence class of, v;H.
In other words every other point in SpUre is further away than (k + I)"1. The
proof of 2 merely consists in defining successive well-founded approximations to a
non well-founded object. Now 3 follows from the following observation:

Fact 5. If CQ ; Ho G Mseip — Mw/ then for any k & N there is a c\ ; Hi € M3ea:j,
such that

c0 ; Ho = ci ; Hi and Cells^(ci) > k.

This allows one to construct objects arbitrarily close to any particular non
well-founded object. The proofs of 4 and 5 will be corollaries to Theorem A.
dFact 4

The following is the main lemma of this section.

Main Lemma:

1. If D, e0 and v0 ; Ho are in Mpure and

eo(vo) ; Ho -»° • • • -»D en(vn) ; Hn

is a single step reduction sequence of length n, and if va ; HO and VQ ; HO are
pointwise = to a depth k , k > n, then

Furthermore vn ; Hn and C* ; Hn are pointwise Lisp equal to a depth k — n.

2. If D, e0 and VQ ; Ho are in Mpure and
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is a single step reduction sequence of length n, and c € 6^ is such that

(V*) (M < « -» c 76 (woii ! /<oW

for all i < \v0\, then for any w £ A @ 6^ we have that

e0(v0) ; rplacx(c, w ; ̂ 0) -*>° • • • -*>° vnlj ; setcxr(c, w ; /in)

Proof of Main Lemma: We only prove the first part; the second is identical
in form. The proof of part 1 is by induction on n.

Base Case (n — 1): In this case

and we must consider whether or not this is a primitive or congruence step. Sup-
pose that VQ satisfies the hypothesis for k > 1.

Primitive Cases: Of the primitive cases the only non-trivial ones are the if
and the memory operation cases.

Suppose e0(v0) - if(volj,etken(vo),eeise(vo)) then

thenvo ! A*0 if W0L ^ NIL

because VQ ; /io =fc i'o i /'o with fc > 1 we know that VQ|J = NIL iff uj|j = NIL,
thus the result in this case follows. If eo(vo) = $(0o) then we must consider the
following three cases.

1. •& = cons

2. d 6 {car,cdr}

3. i? G {mi, atom,sub'L,addl,atom:eq}

All are straightforward. Firstly notice that in all of these cases if i9(wo ) ; /^o
denotes then so will $(VQ ) ; /J,Q simply because of the fact that VQ ; (J,Q =k VQ ; HQ with
k > 1. Thus we need only show that the resulting two memory objects, fl(vo ; /J.Q)
and ^(VQ ; /zj), are Lisp equal to a depth k — 1. In case 1 we actually have Lisp
equality to a depth k + 1 while in case three we have actual Lisp equality. It is
only in case 2 that the bound k — I becomes relevant. DpHmitive Cases

Congruence Cases: To deal with the congruence cases it suffices to observe
that a single step congruence reduction
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must be generated in the following fashion: There is a subterm, ea(vo), of eo(vo)
and a primitive single step reduction

ea(vo) ; Ho -»D ei(wi);^!

such that the term ei(vi) is obtained from KO(VQ) by simply replacing the appro-
priate occurrence of ea by et. The result in this case then clearly follows from the
primitive cases. DBase Case

Induction Step: Is completely trivial. OMain Lemma

The first corollary of the main lemma, theorem A, justifies the introduction
of the topology on § pure-

Theorem A: If / : Msexp — > Miexp is given by a pure definition, then the
induced function from §pure — > §p«re is continuous.

Proof of Theorem A: Pick v ; p £ 6f and let v* ; //* = f ( v ) ; /x. Furthermore
suppose that

/(«) ; p > v* ; f

by a single step reduction sequence of length nv.tfl. Given any e = m~1 > 0 we
have, letting 8 = (m + nv-tlt)

 1, by the main lemma

Thus the inverse image under / of an open set is open. Drheorem A

Remark: Notice that we also have that n-ary functions are continuous in the
product topology, by exactly the same proof.

Corollary 1: The equal function on Mseip is not definable in Mpure. By an
equal function we simply mean a gentle program that only takes on the values T
and NIL, and such that

Proof of Corollary 1: It suffices to observe that the function equal is not
continuous. For pick 3 G §pttre — §u>/ then there exists a sequence {sj};gN °f
elements of §„,/ which converges to s. Therefore the sequence {[s, «i]}ieN converges
to [s, s] in the product space. But for every i £ M we have that equal(s, Si) = NIL.
dCorollary

Corollary 2: The elength function on Mej,-4< is not definable in Mpurf.

Proof of Corollary 2: Again it suffices to observe that elength is not contin-
uous. Ocorollary
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Corollary 3: (Proof of Fact 2 for the =pure case) Two things must be shown.
Firstly that = is a Pure-congruence, and secondly that two memory objects which
are not Lisp equal cannot be identified by a Pure-congruence. The first fact follows
from the main lemma and the fact that Lisp equal memory objects are pointwise
= to a depth k for any k 6 N . The second is also as simple: if two memory
objects VQ ; HQ and v\ ; /zj are not Lisp equal then for some car-cdr chain i9(a;) we
must have that

tf(vo) ; fJ'O > w0 ; (J,o and i?(«i) ; pi > wi ; m,

where one of the Wi is in A and is distinct from the other. Consequently VQ ; HQ
and v\ ; n\ cannot be identified by a Pure-congruence. Dcoroiiary

Corollary 4: Spure is totally disconnected.

Proof of Corollary 4: Suppose that SQ and si are distinct elements of SpMre.
Then it is a simple exercise to construct a purely defined total function

such that /SOlSl(so) = T and /So,Sl(si) = NIL. The required open sets are thus
simply /-)„(!) and /-^(NIL). Dcoroiiary

Corollary 5: If v ; fj, £ M3exp is such that S(v.tfl) has exactly k elements,
(T0, • • • <7k-i> of length n 6 N, each having the property that (v ; fj,)lri G C. Then
Un-i(u ; fj) is homeomorphic to

Spare ® • • • ® Spare 2fc times

in the product topology.

Proof of Corollary 5: For v0 ; /J.Q 6 Un-i(v ; fj,) define the mapping h by

Then it easy to verify that this is the desired homeomorphism. Dcoroiiary

In fact functions specified by pure definitions satisfy an even stronger compu-
tational condition.

Definition: Let us say that a function / is locally trivial if for every v ; /j, €
MUezp f1 Sf there is a k € N and a pure term e(x) such that
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In other words a locally trivial function can, at an open neighborhood of any
point, be defined without recursion. Thus the local behavior of such functions
reduces to that of pure terms.

Theorem B: Every pure function is locally trivial.

Proof of Theorem B: Suppose that / is defined in the pure definition D.
To prove this result we use two transformations on expressions. The first is the
unfolding of an expression and the second is the skeleton of an expression; both
have been defined previously. We can now describe the construction of the term.
Pick v ; n £ Sf and assume that f ( v ) ; /z ~S> v* ; fj,* via a single step reduction
sequence of length n. The desired term is then just

That this term behaves in exactly the same way as / in the open ball of radius
n~l at v ; /j, follows from the main lemma and simple properties of the unfolding
and skeleton transformations. Drheorem B

Corollary 1: The copy function on Msexp is not definable in Mpure. Here by a
copy function we mean a function that satisfies the following two conditions

1. copy(x) = x on Mselp,

2. Vv ; n G Maexp, letting copy(v) ; /z > v* ; fj,*, we have that 0 = Cells^(u) fl

Proof of Corollary 1: This is a simple variation on the above fact and the
second part of the main lemma. For suppose not; let p:copy be a pure function
that satisfies these two properties, and choose any v ; fj, 6 Msexp — Mw/. Assume
that p:copy(v) ; fj, > v* ; /z* via a single step sequence of length k. Now by fact 5
there is a v+ ; fj,+ such that

(w+)| > 2fc+1.

Consequently

p:copy(v) ; fj, = p:copy(v+) ; fj,+ > v+* ; /J+*.

Now by assumption on v+ ; fj,+ there is a c € Cells/t+(u+) such that W \<r\ <
k + 1 — > (v+ ; n+)a ^ c. Now simply choose a € A such that H+(v+)\.0 ^ a. Then
by part two of the main lemma

p:copy(v+) ; setcar(c, a ; //+) > v+* ; setcar(c, a ; /z+*).
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But because Cells/t+»(j;+*) is disjoint from Cells/j+(i>+), which contains c, we
have that

v ; fj, = v+ • fj,+ ¥ v+* ; n+* ^ v
+* ; setcar(c, a ; /z+*).

But this is ridiculous since by assumption

p:copy(v+); setcar(c, a ; /z+) = v+ ; setcar(c, a ; /i+)

and
v+ ; fi+ ^ v+ ; se<car(c, a ; ̂ +)

DCorollary

Remark: Note that almost exactly the same proof will work if we weaken the
first property to

1. C0py(x) = X on Miser?-

6.3. The Interrelationships

The three main results results concerning the relation between M3exp, Mpure+
and Mpure that we prove in this section are:

Theorem C: If / : Ms"ip —* Maexp is definable in Msezp then the following are
equivalent:

• / preserves Lisp equality and maps M^ to Mwf.

• There is an Mpure definable function /* : Maelp —» Msexp such that

f(x) = /*(z) on Mwf

Theorem D: If / : M«"ip —* Msexp is definable in Msexp then the following are
equivalent:

. / maps y^ to Mwf.

• There is an Mpure+ definable function /* : MSeip —*• Msexp such that

/(*) S f*(x) on M w f .

Furthermore if / maps Maexp to Mwf then we can actually have that

f ( x ) * f * ( x ) on Maexp.
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Theorem E: If / : M^lp -> Msexp is definable in Maexp then the following are
equivalent:

. / maps y^j to Mwf and is gentle, i.e

for each 0 < i < \x\.

• There is an Mpure+ definable function /* : M(
s"lp -> Msexp such that

f(x) ~ /* (x) on M w f .

These equivalences allow us to claim that there are only two possible reasons
why a function definable in one fragment is not definable in an other. We outline
the proof of theorem D; the proofs of theorems C and E are simple modifications
of the same idea.

Proof of Theorem D: The proof divides itself into three separates steps; all
in all they are essentially just tedious programming problems.

Step 1: In this step one constructs an Mpure+ definable function fcode which
does the following: given a memory object v ; p 6 Maezp it returns an object
fcode(v) ; P which codes up the memory value sequence v as well as the function
H on the finite set Cells^(v). The details of this coding are not particularly
important. One such possibility is that fcode(v) ; p represents a pair, the first
element of this pair is a list of length |u|, the ith element of the list being the code
for v\,j. Then the second element of the pair could then be an alist consisting of
argument-value pairs, the argument being a code for an element, c, of CellsM(v)
and the value being the codes for //(c) = [u0,v<i]- The only requirement of this
coding is that we can carry out the following:

Step 2: In this step we construct an Mpure+ definable function fevai which,
given an internal form D, see (McCarthy and Talcott, 1980) or Chapter 9, of the
Msexp definition, D, of / evaluates the program on the code for the argument,
fcode(v) ; A*, rather than the argument itself. This enables the Mpure+ function
to mimic the results of the operations rphca and rplacd on the codes without
actually needing to use them. The function fevai should then return the code for
the value, if there is one, thus leading us to step three.

Step 3: We now construct an Mpure+ function /decode which given a code will
construct an object isomorphic to the one described by the code. It is here that
we must make use of the assumption that the range of our original function / is
a subset of Mw/. For otherwise, essentially by fact 3, such a decoding function
would not exist.
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Thus the required definition for /* is loosely described by

/*(*) -«- fdecode(feval(f, D, fcode(x)}).

Drheorem D

The only modifications required for the proof of Theorem C is that now in the
coding step we can only code up the Lisp equivalence class of the object. But since
the function / (which by theorem D we may assume is Mpure+ definable) preserves
equality this need not worry us. It also allows us in the interpreter stage to assume
that eq and equal are the same function. In other words we are assuming that the
argument is the compact element of the equivalence class. The proof of theorem
E is also a simple variation on this technique.



Chapter 7

Derivations and Transformations

This chapter is devoted to the subject of program transformation and deriva-
tion. As we have mentioned many times we view program derivation and program
verification as duals of one another. Methods and insights in one area should give
rise to corresponding methods and insights in the other. The contents of this chap-
ter are rather tentative but nevertheless go some distance to realizing our thesis.
Although we have tried to emphasize the relation between program derivation and
program verification there is one important point where they are different, and this
has the consequence of making the former rather more delicate and subtle than
the latter. In program verification one deals with a fixed definition and proceeds
by manipulating expressions. In program derivation one not only manipulates ex-
pressions but also definitions. Consequently one must deal with the behavior of
an expression with respect to more than one definition. Comparing definitions is
thus more central than simply comparing expressions with respect to some fixed
definition.

In this chapter we define a set of program transformations based on those of
Scherlis, (Scherlis, 1980), (Scherlis, 1981). Our rules will allow us to transform one
program into another in a way that preserves the main function being defined, at
least on the common domain of the program derived and the specifying program.
The objects the rules apply to are not simply definitions, but include so called
expression procedures. Expression procedures are central to the whole theory. The
following quote is from (Scherlis, 1981).

The specialization technique we develop is based on a new approach to
the transformation of applicative programs: We expand an ordinary lan-
guage of recursive equations to include a generalized procedure construct
- the expression procedure. This greatly enhances our ability to manip-
ulate programs in the initial language. Indeed, the expression procedure
provides a way of expressing information not just about the properties
of the individual program elements, but also about the way they relate to
each other. This ability to represent program-specific facts allows us to
manipulate these facts in the same way as any other part of the program.
Consequently, the set of transformation rules we require (not including
simplification rules for the primitive symbols such as cons) is very small.
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An expression procedure represents a method for evaluating a specific
class of expressions. An example of an expression procedure is

ret>(u) o v «— ifn(u, v, rev(cdr(\i)) o cons (car (11), v).

This definition specifies a method for evaluating expressions which are of
the form rev(u)ov where u andv are lists. Now, to evaluate an instance of
the expression at run-time, an interpreter could, rather than evaluate the
constituents of the expression in the usual way, use instead the expression
procedure, and directly return a value. Note that since the else clause is
an instance of the left hand side, this expression is recursive. That is,
the expression procedure can be used to evaluate its own else clause.

Expression procedures are different from other procedures in several
ways. First, their left hand sides are complex expressions which (as we
will see below) already have meanings associated with them. This leads
us to restrict our attention to expression procedures which are consistent
- whose left and right hand sides are equivalent a priori. Thus given the
usual definition of gcd, the expression procedure

is considered inconsistent, since the two sides of the definition are not
always equivalent.

In addition, an expression procedure must represent a progressive
method for computing the expression it defines. The expression procedure,

is not progressive since it introduces looping evaluation of terms whose
values were previously effectively computable.

Consistency and progressiveness are properties of an expression pro-
cedure with respect to some given program. Consider, for example, the
program,

a <— 3 ; b «— 3

Either of the expression procedures,

a + b < — b + a b + a <— a + b



170 Derivations and Transformations

is progressive with respect to the given program. After one has been added
to the program, however, the other ceases to be progressive, since its ad-
dition would introduce looping evaluations where there were none previ-
ously.

In general, it may be quite difficult to establish consistency and pro-
gressiveness for arbitrary expression procedures. In our application, how-
ever we will introduce expression procedures in a systematic way, using
transformation rules that guarantee new expression procedures to be both
consistent and progressive.

Rather than simply manipulate definitions, the rules we shall consider act
upon definitions that include expression procedures. We call these more general
objects derivation expressions, the definition of which is as follows:

Definition: A derivation expression D is an expression of the form

where
/o

is a definition in the standard sense; we call this part of D the standard part. The
function /o is called the main function in the definition.

•'-'expression
e2n+l

is simply a collection of equations where the e* are expressions. This part is called
the expression part. Given such a definition D we say to -«- ti is an equation in D
when it is in either the standard or the expression part. In other words

to -*~ti G D = ^standard U ^expression-

In what follows we shall be evaluating expressions with respect to these more
general objects; consequently we must modify our definition of >D accordingly.
We shall also be comparing the behavior of one expression with respect to one
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derivation expression with that of another expression in the context of a second
derivation expression. This again requires introducing some new terminology. This
shall occupy us for the rest of this section.

Definition: Suppose that D is a derivation expression. Then we extend the
reduction relation by adding the following clause to the primitive cases (cf 2.2.3).

eo(v) ; n —»> ei(v) ; fi if eo(x) -<- ei(x) £ D is an expression procedure

Note that, depending on D, the reduction relation »D may reduce an ex-
pression to many different values, depending on the evaluation path. Also one
evaluation path may terminate in a value, while another may never terminate. We
often view a memory object description e ; ̂  as describing a tree, —»>D being the
successor function. Our terminology reflects this view; for example we shall speak
of evaluation paths. These are of course just paths in the tree. If a derivation
expression, D, has the property that for every memory object description e ; //
every terminating evaluation path terminates at the same (or at least isomorphic)
value, then we say it is consistent. If a derivation expression, D, has the property
that for every memory object description e ; /j, either every evaluation path fails
to terminate or else they all terminate at the same value, then we call it progres-
sive and consistent. Derivation expressions which are not consistent are of very
little interest to us. Consequently the following definition is restricted, for simplic-
ity, to consistent derivation expressions. In comparing definitions and derivation
expressions the following convention is useful.

Definition: Suppose that DQ,DI are derivation expressions, eo(S),ei(x) are
expressions and eo(t>o);//oi ei(t>i);^i are corresponding memory object descriptions.
The function symbols occuring in e; are assumed to be defined in the derivation
expression D;. Then we write

Do,Dj h e0 ; po ~ ei ;/^i

to mean that whenever there is a terminating path in eg ; //o with respect to ~3>D°
there is a terminating path in e\ ; /j,i with respect to ^>Dl and these values are
~-related (in the case of strong isomorphism we must also have that the original
memories have been transformed appropriately) and vice versa. We shall also
extend this notation to the expression case in the obvious fashion. Finally we
shall write

Do ~Di

to mean that for every memory object description e ; // we have

Do,PI h e ; / * ~ e ; / i .
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7.1. The Rules of Scherlis

We shall begin with a brief account of the rules we shall be generalizing. For
more detail than included here the reader is advised to look at (Scherlis, 1980) or
(Scherlis, 1981). The rules we state here are for pure Lisp, henceforth in this section
all expressions and definitions, as well as derivation expressions will be assumed to
be in Mpure, unless explicitly stated to the contrary. In fact to be true to his system
we shall also outlaw both seq and let since they are both redundant and, as far
as the proofs in (Scherlis,1980), are troublesome. The plan of this section is as
follows. We begin by making precise certain concepts necessary for the statement
of the rules. Without further delay we then state the rules. Finally we give a
simple example of their use. The first definition is that of a strict subexpression of
an expression, a subexpression which must be evaluated in order to evaluate the
whole.

Definition: The strict subexpressions of an expression e consist of the collection
g(e) defined inductively as follows:

({e} if e G X U V;

Ke) = { {<4 u e(e°) if e = if (e0, ej, e2)
1 {g} U U 0(eO if e = i?(e0,... em) with tf <E O U F

In (Scherlis, 1980) the following appears as lemma 1 in Chapter 2. It explains
the notion of a strict subexpression.

Lemma: If an expression e (in memory /z) denotes then so must every strict
subexpression.

Note that this lemma is on the face of it false if we include the control con-
struct let. In that case the spirit of the lemma will remain the same; its statement
however must, by force, be elaborated. This is simply because a strict subexpres-
sion of an expression, in the general situation, may have more free variables than
the larger expression. In the general case the definition of the strict subexpressions
of an expression, given in Chapter 2 and repeated here, are as follows.

Definition: The strict subexpressions of an expression e consist of the collection
g(e) defined inductively as follows:

{e} i f e e X U V ;
{e} U £>(eo) if e = if (60,61,62)

{ e } U U - f f ( e O i f e =P(eo,. . .em) with * € O U F or
\seq(e0,...em)

{e} U Uj g(ei) U
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Using this notion we can define the notion of an expression procedure being
a proper definition instance of another expression procedure.

Definition: For a given program e/e/<(x) <— e r , jfc<(x) the pair

where e = [eo,...en] is a proper definition instance of e;e/((x) <— eright(x) if for
each expression e,-, either Xi is a strict subexpression of eright, or else evaluation
of e,- always terminates.

The four rules can now be stated without difficulty.

Composition rule: Suppose that eo -4- e.\ is an equation in D. Composition
produces a new program D* that is the result of adding the new expression pro-
cedure

to D. For this rule to be applicable the variable z must occur only once in e(z)
and it must also be a strict subexpression. Also

must be a proper definition instance of

eo ~t- ei .

Application rule: Let eo -<- &i and e -*• e*(ej) be equations in D, where z only
occurs once in e*(z). Then the application rule allows us to obtain the program
D* which is D with the equation e -*• e*(ej) replaced by the equation e -^ e*(e*).
Here again

must be a proper definition instance of

Abstraction rule: Let

e0 <- eJJ(e(e))

en - e;(e(e))
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be a collection of equations in a definition D such that e = [e°,... ,en]. x =
[x0,... ,£„] is the set of free variables of e, and they all occur as strict subex-
pressions of e. Abstraction produces a new derivation expression D* with these
equations replaced by

where / is a new function symbol not in D. Note that this last equation is in the
standard part of D*.

Equation elimination rule: Any expression procedure can be dropped from
a definition.

Simplification Rule: We refer the reader to (Scherlis, 1980) for a discussion
of the simplification rule.

The following is the main result of (Scherlis, 1980) stated using our notation:

Theorem: Suppose that DI is derived from D0 using the above rules as well
as simplification. Then

It is important to note that we cannot conclude that

Do c^Di

or even
Z?o = I>i.

This is because of the way the abstraction rule has been formulated. The system
we present will differ in this respect. Consider the following definition.

/(x) <— cons ( cons (x,x), c<m.s(x,x)).

Then abstraction allows us to form the following new definition

/(x) <

My) <- cons(y,y).
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Another application produces:

My) «- cons(y,y)

f i ( y ) <- cons(y,y).

Thus we have derived a program, DI, from our original program, D0, for which
we only have

Do, Dih/(*) = /(*).

We do however suspect that the following is true:

Conjecture: Suppose that DI is derived from DO using the above rules as well
as simplification and that

Do^Dj .

Then in fact we have that
DO~DL

7.1.1. An Example of a Derivation.

We finish this section by giving an example of a derivation. In this example
we shall derive reverse from slow.reverse. Recall from Chapter 4 the respective
definitions of these functions.

slow:reverse(y) <—

ifn(y, NIL, append(slow:reverse(cdr(y)), cons(cor(y),NIL)))

reverse(y) <— rev(y, NIL)

rev(y,x) «— ifn(y,x, rev(c<fr(y), cons(car(y),x))))

Let us begin with the definition DO, being

reverse(y) <— ifn(y, NIL, append(reverse(cdr(y)), con3(car-(y),NIL))).

Abstracting the recursive call

reverse(y) <— ifn(y,NIL, append(revo(cdr(y]), co?i5(car(y),NIL)))

«— reverse(x.).

Now using application with respect to the definition of reverse in the body of revo
gives

reverse(y) <— ifn(y,NIL, oppen<Z(revo(crfT'(y)), co?is(car(y),NIL)))

) «- ifn(y,NIL, appenrf(ret;o(crfr(y)), co?is(car(y),NIL))).
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The derivation proceeds by specializing the auxiliary program revo to the context
append(revo(x),y). This is done by using the composition rule.

reverse(y) <— ifn(y,NIL, append(revo(cdr(y]), cons (car (y), NIL)))

rev0(y) <— ifn(y,NIL, append (rev 0(cdr(y)), cons (car (y), NIL)))

append (rev o(x),y) <—

append (if n(x, NIL, append (rev o(cdr(y)), cons(car(x), NIL))), y)

Simplifying using properties of if and append gives

reverse(y) «— ifn(y, NIL, append (reu0(crfr(y)), cons(car(y),NIL)))

revo(y) <— ifn(y, NIL, append(revo(cdr(y)), corw(car(y),NIL)))

append(revo(x.),y) <—

ifn(x,y,

Notice we have now obtained a tail recursive expression procedure, consequently
the specialization procedure was successful. We proceed by renaming the complex
expression append(revo(x), y) to a new basic name revi (x, y) by using abstraction
and composition, and eliminating the redundant revo function.

reverse(y) <— ifn(y,NIL, revt (coY(y), co7w(cor(y),NIL)))

, y) <— ifn(x,y, revj(aZr(x), cons (car (x),y)))

To obtain the definition of reverse above we simply abstract the bodies of both
definitions into a new function

reverse(y) <

,y) <-re«2(x,y)

,y) <— ifn(x,y, revi(cd,r(x.\ co7is(cor(x),NIL)))

We then unfold the single revi call in the body of rev2 and eliminate the definition
of revi giving

reverse(y) <— rev2(y,NIL)

re«2(x,y) <- ifn(x,y, rev2(cdr(x), cons (car (x.),y)))

as desired.
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7.2. The Transformation Rules

Our rules are only a slight modification of those in (Scherlis, 1980). In fact
we only modify two rules, the abstraction rule and the simplification rule. There
are two reasons for altering the abstraction rule. The first is that since we are
not restricting ourselves to pure Lisp the order of evaluation of terms is much
more important in our case, consequently we cannot be so free-wheeling with
substitutions. The second reason is that our rules are slightly weaker than those
in (Scherlis, 1980), although when restricted to pure Lisp the difference disappears;
this weakening prevents us from going from one definition to another definition
that is only Lisp equal to the first. It is not such a tremendous weakening because
we have the benefit of the let construct in our system. Our system also includes
a generalization of the simplification rule which is used in (Scherlis, 1980) but
never made completely explicit as a rule there. The reason we do this is because
the simplification rule really only treated the underlying properties of the data
operations as well as the control construct if. The three other main rules are
principally concerned with function application. Consequently, since our control
structure is much richer, we must include a rule, the equivalence rule, that allows
us to make use of simple properties of these added control primitives. This rule
allows us to be quite free-wheeling with properties of the control primitives and
data operations. However it probably also allows us to introduce looping where
there was none previously. To state this rule we need the following:

Definition: Two expressions eg(x} and ej(x), which may contain function
symbols defined in D, are said to be strongly isomorphic independent of the
definition D iff for every definition D* (which provides definitions for the function
symbols defined in D) we have

The idea behind this rule is quite simple; it is designed to eliminate those
expressions which can only be shown to be strongly isomorphic by using folding.
Every rule, other than folding, which we presented in the last section of chapter 3
preserves this stronger form of equivalence.

The first rule, being the generalization of the simplification rule, is then stated
as:

Equivalence rule: Given a derivation expression, D, and an equation to -<- 1\
in D, if <2 is an expression that is strongly equivalent to t\ independent of the
standard part of D then we can obtain a new derivation expression D* from D by
replacing the equation to -<- ti by to -<- 1% .

The next rule is our generalization of the abstraction rule:
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Abstraction rule: Let

to «-

be a collection of equations in a definition D such that y is the set of free variables
of i. Abstraction produces a new derivation expression D* with these equations
replaced by

*»«-*£(/(»))

where / is a new function symbol not in £>. Note that this last equation is in the
standard part of D* .

The other three rules are the same as in the previous section, except of course
they now apply to a wider class of expressions and definitions. We must also modify
the definition of an expression procedure being a proper definition instance of a
definition.

Definition: For a given program e/e/<(x) <— er,-9At(x) the pair

let {2 x- e}e/e/»(Z) «- let{x -«- e}erigkt(x)

where e = [CQ, ... en] is a proper definition instance of e/e/f (z) <— eright(x).

We make the following two conjectures concerning these rules.

Conjecture 1: Suppose D\ is derived from DQ using only the original simpli-
fication rule, the restricted abstraction rule and the three rules common to both
systems. Then

D0 ~Di.

Conjecture 2: Suppose that D\ is derived from DO using the rules above, and
suppose that / is a function defined in both. Then letting 8?' be the domain of /
with respect to the definition £),- we have that

f(x) ~ f(x) on 8°« D
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7.2.1. An Informal Derivation

We begin by giving an outline of a derivation that is more in the form of
a verification. We then give the formal version of the derivation in our system.
Consider the following derivation of a tail recursive append program from the
traditional recursive one. We begin with the simple-minded definition of append:

append(x,y) ~

~ ifn(x, y, cons(car(x), append(cdr(x), y)))

The first step is to break up the computation into single steps:

~ ifn(z,

y,
let{u -<- append(cdr(x), y ) } cons (car (x),u))

We can also break up the call to cons into two steps:

~ ifn(z,

y,
let{u -<- append(cdr(x), y ) }

let{z -<- cons (car (a;),*)} rplacd(z,u)),

where * is some term that does not depend on u .

We can now commute the cons since * did not depend on u :

~ ifn(x,

y,
let{z -<- cons(car(x), *)}

let{u -<- append(cdr(x), y ) } rplacd(z, u)),

~ ifn(x,

y,
let{z -^ cons(car(x), *)}

let{ua/ •+ z}

let{u -<- append(cdr(x), y ) }

seq[rplacd(z, u), DO/))

This last step separates the value returned from the operations, by creating an-
other local variable. Such a step in general gives us more freedom to find tail
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recursive expressions. Now the smallest subexpression of this last term that we
could possibly hope to obtain a tail recursive expression for is

let{u -<- append(cdr(x),y)}seq(rplacd(z,u),val).

The task is thus to find a strongly isomorphic expression to this one which is tail
recursive with respect to this expression. To begin with we have

let{u -<- append(x, y ) }

seq(rplacd(z,u),val)) ~

~ let{u -«- ifn(a:,y, cons(car(x), append(cdr(x),y)))}

seq[rplacd(z, u), val))

~ if n(z,

seq(rplacd(z, y), val),

let{u -<- cons(car(x), append(cdr(x), y ) ) }

seq[rplacd(z, u), val))

~ if n(x,

seq(rplacd(z,y),val'),

Iet{ar0 -*• cons(car(x),*)}

let{«o -«- append ( c d r ( x ) , y ) ) }

seq(rplacd(zQ,u0),rplacd(z,zo),val))

seq(rplacd(z,y),val),

let{20 -<- cons (car (x),*)}

let{«o -«- append(cdr(x), y ) ) }

seq[rplacd(z,z0),rplacd(za,u0),val))

~ if n(x,

seq(rplacd(z, y), val),

Iet{z0 -^ cons(car(x), *)}

seq(rplacd(z, z0)

letjuo -«- append ( c d r ( x ) , y ) ) }

seq(rplacd(zo,uo), val))

Thus we have succeeded in deriving a strongly isomorphic term that tail recursively
calls the initial expression. Thus if we introduce a new function symbol, app: it , for
the expression

let{u -<- append(x, y)}seq(rplacd(z, M), val)),
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which has x, y, z, val as its free variables, then the above shows that

app:it(x,y,z,val) ~

~ let{« -*- append(cdr(x), y)}
seq(rplacd (z, u), val)

~ if n(x,
seq(rplacd(z,y),val),
Iet{zo -<- cons(car(x), *)}

seq(rplacd(z, z0)
app:it(cdr(x),y,z0,val)

Thus we arrive at the iterative version of the append program:

append (x, y) <—

ifn(x,

y-
let{z -<- cons (car {x), *)}

let {val ̂  z}

app:it(x,y,z,val))

ifn(x,

seq(rp/ac(i(z, y), val),

let{zo -

app:it(cdr(x), y, z0, val)

7.2.2. The Formal Version of the Derivation

The previous derivation can be seen to be a valid one in our system by the
following derivation: We begin with the initial definition

append(x.,y) «— ifn(x, y, corw(car(x), append(cdr(x.)),y)))
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Using the composition rule we add to this the expression procedure

-*- append(x., y)}seq(rp/a«i(z,u),val)) <—

let{u-*- ifn(x,y, cons (car (x), append (c</r(x),y)))}

Then using the abstraction rule this expression procedure becomes:

let{u-<- append(x., y)}seq(n>Joc</(z, u),val)) <— app:it(x,y, z, val)

opp:ii(x,y,z,val) <-

let{u -^ if n(x, y, cons(ca.r(x), a,ppend(c<Lr(x), y)))}

seq(7-pZoc(i(z,u),val))

Using the equivalence rule this last equation becomes

ifn(x,

seq(rplacd(z, y),val),

let{zo -<- con3(car(x),

seq(rp/ac<Z(z,zo)

let{uo -

The application rule allows us to transform this into

app:ii(x,y,z,val) <-

ifn(x,

let{zo -<- cons (car (x),*)}

), y, z0, val)

The final result is obtained by using the equivalence rule, and then application.
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Exercises:

1. Derive copy.list from rec:copy:list.

2. Derive copy.queue from rec:copy:queue.

Finally we ask a question we have not investigated. Can one derive nconc or
nreverse from the following incomplete specifications?

1. nconc(copy:list(x\y) ~ append(x,y).

2. nreverse(copy:list(x)) a reverse(x).



Chapter 8

The Robson Marking Algorithm and Applications

In this chapter we verify the Robson marking algorithm, phase one of the so
called Robson copying algorithm, by showing that it is strongly isomorphic to a
very simple recursively defined algorithm. For an alternative proof of correctness
see (Mason and Talcott, 1985). We shall also give two examples of the use of this
program. In the first example we describe a transformation of a purely defined
function, using this example to illustrate the process of pointer reversal and also to
give a simple efficient way of implementing recursion with respect to the left first
spanning tree of a graph, well-founded or not. The second example is the actual
Robson copying algorithm, treated somewhat differently from that in (Mason and
Talcott, 1985).

The marking algorithm is interesting in its own right since it is a more so-
phisticated algorithm than the Deutsch-Shorr-Waite marking algorithm, (Deutsch,
1968), (Schorr and Waite, 1967), and it can be used to implement recursion ef-
ficiently with respect to the left-first spanning tree of a graph. Although in our
domain M3exp there are no mark or field bits, this is of no particular importance
since we shall use abstract syntax (McCarthy, 1962b) to hide this fact. The advan-
tage of this is that we can isolate the necessary properties of the implementations
of the abstract syntax that are required in the correctness proof. Thus, given a
particular implementation of the algorithm we can simply check the correctness
of the program by checking that the abstract syntax has the desired properties.
We shall give two different interpretations to the abstract syntax, one for the
transformation and one for the Robson copying algorithm.

The Robson marking algorithm, like the Deutsch-Schorr-Waite marking algo-
rithm, uses pointer reversal to avoid using an explicit stack. Pointer reversal is
a very powerful technique that is used in destructive memory programming. The
idea is quite simple; the program destructively alters the structure it is operat-
ing on to store the information that a stack would normally be used for. In this
case the algorithm scans the graph in a left-first fashion, marking cells as it pro-
ceeds. Since the cells are marked when they are first visited, looping or repeatedly
scanning the same subgraph is avoided.
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8.1. The Robson Marking Program

In the Robson marking algorithm the process of marking a cell consists of
allocating a new cell and moving into this new cell the contents of the cell being
marked. The cell being marked is then updated so that its car contains a mark
and its cdr points to the new cell. Thus a cell prior to marking is depicted in figure
14, while the situtation after marking is depicted in figure 15.

Figure 14. A Cons Cell Prior to Marking

mark

Figure 15. After Marking

Notice that since the old cell contains the mark, external pointers if they
check can still access the old car and cdr. A mark is an object specially al-
located before marking and so is recognizably not part of the structure to be
marked. We use seven different marks to store more information than just sim-
ply whether or not the cell has been seen before. We shall denote these marks
by ER,EL,E10,MOO,M01,M10,M11, their meaning roughly being described by the
following:

EL - Exploring the left hand side of the cell. If the car is not terminal, then while
it is being marked the pointer to it will be utilized to store the previous stack.
The cell itself then becomes the current stack.
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ER - Exploring the right hand side after having explored the left hand side, which
was neither atomic nor already marked. If the cdr is not terminal, then while
it is being marked the pointer to it will be utilized to store the previous stack.
The cell itself then becomes the current stack.

E10 - The left hand side is atomic or has been visited before, now exploring the
right hand side.

Mil - Both the left and right hand side are either atoms or cells that were visited
earlier in the left first scan; such cells are called terminal.

M01 - Only the right hand side was terminal and both sides have been completely
visited.

M10 - Only the left hand side was terminal and both sides have been completely
visited.

MOO - Neither the left nor the right were terminal, and both sides have been com-
pletely visited.

A cell that is marked either EL, ER or E10 resides on the stack, the inverted pointer
chain. Marks may be either atoms or cells. The crucial point is that they must be
distinct from one another and disjoint from the structure being marked. This will
be assumed in the following. The actual definitions of the Robson algorithm are:

rmark(s) <-— if (terminals], s, morfccar(s,NIL))

markcar(s, stack) <—

s&q(mkmark(s, EL),

let{tl-«-a(s)}

seq(seim(s,E10), markcdr(s, stack)),

seq(seta(s, stack), markcar(tl, s))))

markcdr(s, stack) <—

Iet{t2-s-d(s)}

if(<enrn'na/(t2),

if s( eg(ER, m(s)), seq(se<m(s, M01), pop:mark:stack(s, stack)),

eg(E10,m(s)), seq(«e<m(s, Ml l),pop:mark:stack(s, stack)))

seq(setd(s, stack), markcar(t2, s)))
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pop:mark:stack(s, stack) «—

ifn(stack,

s,
let{tl -<- o(stack),t2 -<- d(stack)},

if s(e?(EL, m(stack)),

seq(.seiTO(stack, ER),

se<a(stack, s),

marfcofr^stack, tl)),

eg(ER, m(stack)),

seq(.se<TO(stack,MOO),

setd(sta.ck, s),

pop:mark:stack(sta.ck,t2)),

eg(E10, TO(stack)),

seq(,seiTO(stack, M10),

setd(st3iCk, s),

pop:mark:stack(staLck,

The program as written above is a tail recursive definition, which uses the abstract
syntax

TO, a, d, seta, setd, mkmark,setm, marked, terminal .

The function mkmark does the job of allocating the new cell and placing the
contents of the original cell in it, altering the original so that its car contains the
appropriate mark and its cdr the new cell, a and d then access the old car and cdr,
while seta and setd update them, setm just replaces the mark without allocating
any new cells, marked determines whether the cell is marked and TO returns the
mark, terminal just checks whether a cell is terminal, namely whether it is an
atom or an already marked cell. To be explicit we have the following definitions
of these functions.

TO(cell) <— car-(cell)

a(cell) «- car(c<fr(

<Z(cell) <- cdr(cdr(cell))

mkmark(cell,m) <—

Iet{t2-ecar(cell)}

seq(ry/oca(cell,m), rplacd(cell, cons(t2, crfr(cell))))
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) <— rpkco(cell,m)

,se<a(cell,x) «— rp/acc(c(ir(cell),x)

3e<<Z(cell,x) «— rplacd(cdr(cel'L),'x.)

marked(cell) <- memg(car(cell),(ER,EL,E10,Mll,M01,M10,MOO))

terminal(cell) <— or(aioTO(cell),mar&e<2(cell))

In this example we shall prove that the above program does exactly the same
job as a very simple recursive algorithm. Again we consider such a reduction as
a form of verification. The simple recursive version is, using the same abstract
syntax, the following program:

rec:rmark(s) «— if(terminal(s), s,se<i(rec:rmarkl (s), s))

rec:rmarkl (s) <—

s eq( mkmark ( s , EL) ,

if(terminal(a(s)),

seiw(s,Mll),

seq(rec:rmarkl (o(s)),

if(terminal(d(s)),

se<m(s,M01),

seq(3e<m(s,MOO), rec:rmarkl (^

Theorem: rmark(x) ~ rec:mark(x)

Before we prove this theorem we give two examples of the use of the marking
program.

8.2. An Application of the Robson Marking Algorithm

In this example we shall describe a program transformation T which, given a
pure Lisp function / with definition
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/(x,params) <—

if (aiom(x),<7(x, params), /z.(/(car(x), params),

/(c<fr(x),params),

x,

params)),

here g and h are any previously defined pure Lisp functions, produces a function
Tf that has the following properties:

• Whenever / is defined so is Tf and their values are Lisp equal.

• Tf is defined by a set of mutually tail recursive functions.

• Tf is gentle in the sense that its use of destructive memory operations is not
visible from outside the function.

• Tf takes notice of any shared structure within x and does not duplicate
calls to /. This gives Tf the ability to be exponentially faster than its pure
counterpart. It also means that when / takes a value, Tf need not take an
isomorphic value.

• As an added feature Tf can detect cyclicity in its x argument and terminate
with some desired bell or whistle.

• Tf destructively alters x so that it can store the stack, the left-first spanning
tree, and any precomputed value on the structure itself, thus using little space
and allowing quick and easy access to the information so stored.

This destructive modification of x creates two complications the transforma-
tion must deal with, complications which of course slow down its performance.

• The first complication is that during the computation a;, as we have already
remarked, will be modified so that it can be used to store relevant information
about it and the computation. This means that if the function h actually uses
its x parameter during the computation then it must be made aware of these
changes. We shall return to this point when we are able to discuss it in more
detail.

• The second complication, again caused by the temporary modification of x,
is more troublesome. If params share any structure with x then again this
must be taken into account. However unlike the previous complication this
is not at all easy to accomplish. For this reason we shall henceforth assume
that there is no structure sharing between x and params.
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The transformation that we describe here is an abstraction of the Robson
copying algorithm (Robson, 1977). Being a generalization it fails to incorporate
the eureka step , cf (Burstall and Darlington, 1977), which makes the Robson
algorithm a bounded space algorithm.

8.3. A Description of the Transformation T

The transformed program Tf can naturally be divided up into three phases,
the first and the last being independent of the nature of /, g and h. However we
shall discuss them in order.

8.3.1. Phase 1: Marking x.

The marking algorithm used here is just phase one of the Robson copying
algorithm, the only two modifications are to the abstract syntax.

• The terminal function is elaborated so as to detect cyclicity.

• The abstract syntax is modified so as to include a value cell.

Note that both these modifications only effect the abstract syntax; conse-
quently as long as the new interpretation of the abstract syntax has the same
properties as the old one, the marking theorem will hold in both cases.

The first modification is quite simple; during the marking process one can
detect cyclicity with almost no effort. When a terminal cell is encountered that is
marked either by EL, ER or E10 we know that the structure in question is cyclic.
The reason is simply that if the structure was well-founded then terminal cells
would have to be completely marked, in other words be marked by either MOO,
M01, M10 or Mil. The second modification is as follows. When marking a cell here,
two rather than one new cell is allocated. The first we shall call the value cell
while the second we call the a-d cell. The old cell is modified so that its car points
to a mark and its cdr points to the value cell. This new cell's car pointer is used
to store values, originally set to a default value no rvalue, while it's cdr points to
the second new cell, the a-d cell, which in turn is used to store the original cell's
contents, v accesses the car of the value cell, and setv updates it. Thus if we begin
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~Vd

Figure 16. A Cons Cell Prior to Marking

mark

•a / i t e

no:value

a-d
• Vd

Figure 17. After Marking

with the situation depicted in figure 16, the situation after marking is portrayed
in figure 17.

The actual definitions are as follows.

ra(cell) <— car(cell)

t;(cell) <— cadr(cell)

a(cell) «- caddr(cell)

d(cell) <- cdddr(c9U)

mkmark(ceJ.1.,m) <—

seq(rp/aca(cell,m),

rplacd(cell, cons(no:value, cons(t2,

) <— r-p/aca(cell,m)

<— rplaca(cdr(cell),v)

.sefa(cell,x) <— rplaca(cddr(c&Il),yC)



192 The Robson Marking Algorithm and Applications

morfced(cell) <—

if(mem3(car(cell),(ER,EL,E10)),

CYCLIC,

memg(car(cell),(Mll,M01,M10,MOO)))

<er-mmo/(cell) <— or(atom(ceII),marked(c&I'L))

In describing the next two phases we shall be content to describe the recursive
versions of them. The we finish off this section with a brief description of the
pointer reversing process, whereby one obtains the actual programs. For example
the marking theorem of this section shows essentially that the Robson marking
algorithm is simply a pointer reversing version of the recursively defined rec:mark
program.

8.3.2. Phase 2 and 3: Computing /(z) and Restoring x

Phase two of the transformation Tf is the program comp:tf that actually
computes the value of the function Tf. It is then followed by rstr, the third phase,
whose sole purpose is to restore a; to its original state. The recursive versions of
the algorithms are both instances of the following schema, perhaps the simplest
example of recursion on the left first spanning tree.

G(s,params) <— if(o<om(s),^(s,params), Gj(s,params))

G/(s,params) <—

let{mark:bit -<- wi(s)}

seq(ifs(e<7(mark:bit,MOO), seq(G.f (a(s),params),

Gj(<Z(s),params))

e5(mark:bit,MOl), Gi(a(s),params),

eg(mark:bit,M10), Gj (<Z(s),params),

eg(mark:bit,Mll),NIL),

In the case of rec:comp:tf we have

• G = rec:comp:tf

• GI = rec:comp:tfi
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• G% has the following definition

C?2(s, params) t-

setv(s, t:h(val(a(s), params),

?;a/(<i(s), params),

s,

params))

val(s,params) <— if(atom(s) ,g(s ,params), t>(s))

While in the case of rec:rstr we have

• G — rec:rstr

• GI = rec:rstrj

• GS(S, params) -<- rplacd(rplaca(s,a(s),d(s*))

8.3.3. The Pointer Reversal Process.

It suffices to deal with the G, GI , G% schema when both GI and G% are
already tail recursive. So we shall treat only GI in this case. We shall also omit
the parameters to simplify reading. The first and simplest way to transform such
a program into a tail recursive program is to incorporate an explicit stack. In this
case a frame need only consist of a single object, the father of the current value of
s. The actual definitions are:

G j ( s , stack) <—

ifs(or(eg(m(s),MOO),

eg(m(s),M01)), Gj(o(s), cons(s, stack)),

eg(m(s),M10), Gt(d(s), cons(s, stack)),

eq(m(s),Mil), pop:Gi '.stack(s, stack, 62(3))),
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pop: Gi :stack(s, stack, val) <—

ifn(stack,

val,

let {father -«- cor (stack), mark -<- m(cor(stack))}

if s(and(eg(mark,MOO), eq(s car(f ather))),

Gj( a1 (father), stack),

eg(mark, MOO), pop:Gi :stack(s, cdr(stack), G% (father)),

eg(mark,MOl),pop:(?j :stack(s, cdr(stack), G2(father)),

eg(mark,M10),pop:Gi :stack(s, c<fr-(stack), G% (father))))

The next part of the process is aimed at eliminating the cons call when we
push the stack. The first thing to notice is that, since we are treating recursion
with respect to the left first spanning tree, the s cell will not be used in computing
C?i(a(s),cons(s, stack)) or Gi(d(s),cons(s, stack)), except in one place. When
s is marked MOO we use s to determine, in the pop:Gj -.stack program, whether or
not the d value has been computed. Rather than do this we can simply alter the
mark, to say FOO, when we are computing the a part of a MOO cell. Consequently
while we are computing the a part of s we can use the a pointer of s to store the
old stack. Similarly when we are computing the d part we can use the d pointer
to store the stack. This eliminates the need to create a new cell when we push the
stack. Of course when we pop the stack we must restore the contents. This leads
to the following schema.

Gj(s, stack) <—

let {mark -<- m(s), a:s -4- o(s), d:s x- d(s}}

if s(e<7(mark,MOO), seq(se<a(s, stack) se<m(s,FOO), GI (a:s, s)),

e5(mark,M01), seq(«e<a(s, stack), G/(a:s,s)),

eg(mark,M10), seq(sef<Z(s, stack), Gj(d:s,s)),

eg(mark,Mil), pop:Gj:stack(s, stack,62(3)))
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pop: Gj:stack(s, stack, val) «—
ifn(stack,

val,
let{d:stack-<- d(stack),a:stack-<- a(stack),mark-<- m(stack)}

if s(eg(mark, FOO), seq(setm(stack, MOO),
setd(stack, a(stack)),
seta(stack, s),
GI (d:stack, stack)),

e<7(mark,MOO), seq(se<d(stack, s),
pop: GI :.stoc&(stack, d:stack, G% (father)),

e2(mark,MOl), seq(se<a(stack, s),
pop: GI :,siacfc(stack, a:stack, G% (father)),

eg(mark,M10), seq(setd(stack, s),
pop: GI :aiocfc(stack, d:stack, Gs (father))))

Thus we have obtained our tail recursive version, without using any more space,
by incorporating the stack in the input.

8.3.4. Analysis of Tf and /

We simplify matters by only considering S-expressions which are Lisp equal
up to different atomic values to iree(n) for some integer n.

iree(n) «— if (eg(n, 0), NIL, cons(tree(n — l), <ree(n — l)))

There are many of these objects. For example we have the following simple
exercise which shows that there are at least on the order of 2™ such objects.

Fact: Vm such that n < m < 2n — 1 we have that there is a Lisp object
containing only m cells which is Lisp equal to tree(n).

In fact this is a substantial underestimate since if we let D(n) be the number
of non-isomorphic lisp objects equal to tree(n + 1) and D(n, k) be those of these
that have exactly k cells which contain atoms then we have

) = £i=i{t'}.D(n,0> where {£} is the Stirling number of the second
kind, see (Knuth, 1968). In other words {£} is the number of partitions of
a set with n elements into k non-empty subsets. So for example D(Q) = 1,
£>(!) = 2, D(2) = 17, and D(3) = 5482.

If v is an object Lisp equal to tree(n + 1) we say that the virtual size of v
is 2". The time to compute f ( v ) is directly proportional to the virtual size of v
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whereas that for Tf is proportion to the actual size. Thus in general when there
is any substantial degree of structure sharing in x then the transformed program
should out perform its pure parent. There are several questions raised by such
an analysis. The most important, from a practical point of view, we shall not
approach. We can describe for what sort of Lisp objects our transformed program
out-performs its parent, but we cannot answer the question of how regularly such
objects show up in actual practice.

In (Clark and Green ,1977) the following remarks are made:

A precise count of shared cells was not made at the same time as the
other work reported here. A later measurement, however, using different
versions of the programs and a different tracing technique, found that
between 1-4 and 2-4 percent of each program's list cells were pointed to
more than once. Most of these cells were pointed to just twice. The
most frequently referenced cell in each program attracted between .1 and
.5 percent of all list pointers (as many as several hundred pointers).

Although an interesting fact, it tells us little about the nature of this sharing,
and consequently little about the above mentioned practical question. Another
interesting observation made in (Clark and Green, 1977) is that pointers to atoms
roughly obey Zipf's law. So although in our transformation we have not attempted
to eliminate duplicate calls to g, such an optimization might be worthwhile if g is
a lengthy or costly function.

8.4. The Robson Copying Algorithm

The next use of the Robson marking program is the one for which it was
originally designed, namely as phase one of the Robson copying algorithm. In this
example we use the first interpretation of the abstract syntax; namely, in marking
only one new cell is allocated. We begin by a discussing how the program works.
As Robson himself says of his own algorithm:

A new algorithm is presented which copies cyclic list structures using
bounded workspace and linear time The distinctive feature of this
algorithm is a technique for traversing the structure twice, using the same
spanning tree in each case, first from left to right and then from right to
left.

The first traversal of the structure corresponds precisely to the algorithm that
we have called the Robson marking algorithm. Consequently we need now only
describe the second traversal, best described as a peeling operation.

Recall that after the first traversal each cell is allocated a new cell, which we
shall call its image. The original cell is modified so that its car part contains a
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mark denoting its place in the left-first spanning tree, while its cdr part contains
its image. The image in turn contains the cell's original contents. Consequently
each original cell now contains two more pieces of information, namely whether its
car or its cdr is terminal in the Brouwer-Kleene ordering of the left-first spanning
tree. This information allows the second traversal to use the same spanning tree,
in the reverse order, without further marking. The crucial observation is that
since the decision to follow a pointer depends on the mark in the cell containing
it, rather than upon the cell pointed to, this traversal can remove the marks as
it uses them. Furthermore since the image cell, which is used together with the
original cell to store the mark and the original contents, is no longer required, this
cell can be recycled and used as the corresponding cell in the copy. This storage
optimization is similar in spirit to that done recently in the study of tail recursion
up to a cons, see for example (Wadler, 1984), (Warren, 1980) or (Steele, 1977b).

copy(s) <— if(atom(s},s,peel(rmark(s),'SIL)

peel(s, stack) <—

let{nc -<- c<Zr(s),tl -<- o(s),t2 -<- d ( s ) }

if s(e5(MOO, m(s)), seq(setm(s, FOO),

setd(s, stack),

pee/(t2,s)),

e<?(M01, m(s)), seq(setm(s, stack),

seta(s,t2),

setd(s, image(t2)),

pee/(tl,s)),

eq(HiO, m(s)), seq(setm(s, F10),

setd(s, stack),

pee/(t2,s)),

(s)), seq(,seim(s,tl),

seta(s, image(tl)),

setd(s, image(t2)),

rplacd(s,t2),

pop:peel:stack(s, stack,nc)))
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pop:peel:stack(s, stack,newcel) <—

ifn(stack,

newcel,

let{nc-<- c<Jr(stack),oc-<- car(stack),tl -4- a(stack),t2-
ifs(eg(FOO,m(stack)),seq(se/ra(stack, t2),

seid(stack, newcel),

«e<o(stack, s),

peel(tl, stack)),

eg(F10, m(stack)),seq(se<m(stack, tl),

se<a(stack, image(tl)),

, newcel),

, s),

pop:peel:stack(sta.cla, t2, nc)),

T, seq(Yp/acd(stack,tl),

setm(nc, newcel),

,seim(stack, s),

pop:peel:stack(sta.cVL, oc, nc)))

image(l) <— if(atom(l), 1, cdr(I))

In (Mason and Talcott, 1985) the following result is proved using explicit
evaluation, induction and a sharp knife for dissecting the resulting memory.

Theorem: copy(x) = x on Mse:cp. Furthermore if

copy(c); n > c* ; n*

then

1. n = n* on Cells^c)

2. CellsM(c) n CellsM.(c*) = 0

3. |VI = |^l + lceHs^(c)|

One could also show that it is strongly isomorphic to the following relatively
simple recursively defined program. This we shall do later. It does however point
out a weakness in our program, since the recursive version is not really very much
simpler than the pointer reversing counterpart.
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rec:copy(i) <—

if(oiom(l),

1,

seq(m::marfc(l), rec:peel(l)))

rec:pee/(oldcel) <—

let{newcel -<- cdr(oldcel)}

let{ newcar -<- ima0e(car(newcel)),

newcdr-<- zmape(c<ir(newcel)),

oldcar -<- cor(newcel),

oldcdr -<- cdr(newcel)}

, m(oldcel)), seq(rec:pee/(oldcdr), rec:yee/(oldcar)),

, m(oldcel)), rec:pee/(oldcar),

eg(M10, m(oldcel)), rec:pee/(oldcdr),

e3(Mll,m(oldcel)),NIL),

rp/aco(oldcel, oldcar),

rplac(i(oldcel, oldcdr),

rp/oca(newcel, newcar),

rp/ac<i(newcel, newcdr))

Peeling Theorem: If x = rmark(y) for some y which does not contain any
marks, then

peel(x,$Il,) ~ rec-.peel(x).

8.5. The Proof of the Marking Theorem

We now proceed with the proof of the following theorem,which is identical
in spirit if not in detail to the proof given earlier of the Deutsch-Schorr-Waite
marking algorithm.

Theorem: If x does not contain any marks, then

rmark(x) ~ rec:mark(x)

Proof of Theorem: We prove the following lemma by induction on the size of

Unmarked(s),
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the set of unmarked cells reachable from s via paths through unmarked cells. For
typographical reasons we shall refer to pop:mark:stack simply by popstack.

Lemma: markcar(s,stack) ~ seq(rec:markl(s),popstack(s,stack))

To see that the result follows it suffices to observe that

markcar(s,WIL) ~ se<%(rec:markl(s),popstack(s,HiIL)) ~ seq(rec:markl(s),s)

^Theorem

Proof of lemma: Although the proof seems long, it is in fact quite short. It
consists of 20 simple transformations on a sizable program; hence its length.

markcar(s, stack) ~

~ seq(mkmark(s,EL),

let{tl-«-a(s)}

if (iermmaZ(tl),

se<i(setm(s, E10), markcdr(s, stack)),

seq(seta(s, stack), marfccar(tl, s))))

evaluating the let gives

~ seq(mkmark(s,EL),

if (terminals a),

seq(setm(s, E10), markcdr(s, stack)),

seq(seta(s,stack),markcar(sa,s))))

applying the induction hypothesis to the marfccar(sa,s) call

~ seq(mkmark(s,E.L),

if (terminals a),

SQq(setm(s, E10), markcdr(s, stack)),

seq(seta(s, stack), seq(rec:markl (sa), popstack(sa,s)))))

removing nested seqs ,unfolding the popstack(sa.,s) call
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~ seq(mkmark(s,EL),

if(terminal(sa),

seq[setm(s, E10), markcdr(s, stack)),

seq(seta(s, stack),

rec:markl(sa),

ifn(s,

So,

let{tl -<- a(s), t2 -«- d(s)},

ifs(eq(EL,m(s)),

seq(setm(s,ER),seta(s,sa), markcdr(s,tl)),

eq(ER,m(s)),

seq(setm(s, MOO), setd(s, sa), popstack(s, t2)),

eq(E10,m(s)),

seq(setm(s, M10), setd(s, sa), popstack(s, t2))

evaluating the let yields

~ seq(mkmark(s,EL),

if(terminal(sa),

se<%(setm(s, E10), markcdr(s, stack)),

seq[seta(s, stack),

rec:markl(sa),

ifs(eq(EL,m(s)),

seq[setm(s, ER), seta(s, sa), markcdr(s, stack)),

eq(ER,m(s)),

seq(setm(s, MOO), setd(s, sa), popstack(s, Sd)),

eq(EW,m(s)),

seq[setm(s,MiQ),setd(s,sa),popstack(s,Sd)))))))

simplifying the if using the fact that at this branch m(s) ~ EL gives:
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if(terminal(sa),

seq(setm(s, E10), markcdr(s, stack)),

sec((seta(s, stack),

rec:markl (sa),

seq(setm(s, ER), seta(s, sa), markcdr(s, stack)))))

nested seq disposal, unfolding markcdr(s, stack) and commuting the seta s:

~ seq(mkmark(s,EL),

if(terminal(sa),

seq(setm(s, E10), markcdr(s, stack)),

seq(seta(s, stack),

seta(s,sa),

rec-.markl (sa),

if(terminal(t2),

ifs(eg(ER,m(s)),

seq(seim(s,MOl),pop5<ocfc(s, stack)),

se<i(setm(s,l/li'i),popstack(s, stack)))

seq(setd(s, stack), markcar(t2, s ) ) ) ) ) )

evaluating the let and cancelling successive seta s yields:

if (terminals a),

seq(setm(s, E10), markcdr(s, stack)),

(sa),

if (terminals d),

ifs(eg(ER, m(s)), se<^(setm(s,ViO'i),popstack(s, stack)),

eq(E10,m(s)),s&q(setm(s,l/l'il),popstack(s, stack)))

seq[setd(s, stack), markcar(sd,s))))))

deleting vacuous if s and using the induction hypothesis:
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~ seq(mkmark(s,EL),

if(terminal(sa),

seq[setm(s, E10), markcdr(s, stack)),

seq[rec:markl (sa),

setm(s,E'B.),

if (terminals d),
seq(setm(s,l/iQ'i),popstack(s, stack)),

seq[setd(s, stack),

seq(rec:markl(sd),popstack(sd,s))))))

nested seq disposal, unfolding and simplifying the popstack(s^,s) call:

if (terminals a),

seq(setm(s, E10), markcdr(s, stack)),

seq(rec:markl ( s a ) ,

setm(s,ER),

if(terminal(sd),

seq(3etm(s,MQl),popstack(s, stack)),

seq(setd(s, stack),

rec:markl(sd),
seq(setm(s, MOO), setd(s, Sd), popstack(s, stack)))))))

nested seq removal , commuting then cancelling setd s yields:

~ s&<i(mkmark(s,'EL),

if (terminals a),

seq[setm(s, E10), markcdr(s, stack)),

( s a ) ,

if (terminal(sd),
seq(setm(s,yiQ'i),popstack(s, stack)),

seq(rec:markl(sd),setm(s,flOQ),popstack(s, stack)))))))

We now concentrate on the terminal car branch:

markcar(s, stack) ~

unfolding the markcdr(s, stack) call gives:
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if(terminal(sa),

seq(setm(s,E10),

if (terminals <j),

if s(eg(ER, m(s)), seq(ie<m(s, MOl), popstack(s, stack)),

eg(E10, m(s)), seq(3e<m(s,Mll)

seq(setd(s, stack), markcar(sd,s)))

seq(rec:markl (sa),

if (terminals 4),
seq(«e<m(5, MOl), popstack (s,

seq(rec:morW (fid), ^e<m(s, MOO), popstack(s, stack)))))))

simplifying the if s by noting that m(s) ~ E10 at this point yields:

~ se<i(mkmark(s,'EL.),

if(terminal(sa),

s&q(setm(s,E10),

if (terminated),

s&q(3etm(s,Vli'i),popstack(s, stack)))

se<i(setd(s, stack), markcar(sd, s)))

seq[rec:markl (sa),

if(terminal(sd),
sec[(3etm(s,MQl),popstack(s, stack)),

seq(rec:markl(sd),setm(s,flQQ),popstack(s, stack)))))))

using the induction hypothesis on the marfccar-(sd,s) call gives:
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~ se<i(mkmark(s,'E.L),
if(terminal(sa),

seq(setm(s,EiQ),

if (terminals d),
seq[setm(s,Vlll),popstack(s, stack)))

seq(setd(s, stack),

seq(rec:markl (sj), popstack(s<i, s))))

seq[rec:markl(sa),

setm(s,E&),

if (terminals d),
seq(setm(s,M01),popstack(s, stack)),

seq(rec:markl (sd), setm(s,MOQ), popstack(s, stack)))))))

nested seq removal, unfolding and simplifying the popstack(sd,s) call:

~ seq(mkmark(s,EL),

if (terminals a ) ,

if (terminal(sd),
seq(setm(s, Mil), popstack(s, stack)))

se<i(setd(s, stack),

rec:markl(sd),
seq(5eim(5, M10), setd(s, Sd), popstack(s, stack)))))

sa),

if(terminal(sd),
seq(setm(s,l/[0l),popstack(s, stack)),

seq(rec:markl (sd), setm(s,HOQ), popstack(s, stack)))))))

removing nested seqs, commuting then cancelling the successive setd s:
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if (terminals a),

seq(seim(s,E10),

if (terminals d),

seq(setm(s,Vl'il),popstack(s, stack)))

seci(rec:markl(sd),

popstack(s, stack))))

seq[rec:markl (sa),

se<m(s,ER),

if (terminals d),

seq(setm(s,MQl),popstack(s, stack)),

seq(rec:markl(sd),setm(s,l/lQQ),popstack(s, stack)))))))

The final transformations are simple:

markcar(s, stack) ~

removing redundant setm s produces:

~ se<±(mkmark(s,EL),

if(terminal(sa),

s&q(setm(s,'Kl'i),popstack(s, stack)))

seq(rec:markl (sd),

popstack(s, stack))))

se<i(rec:markl (sa),

if( terminals 4),

sec[[setm(s,MQl),popstack(s, stack)),

se<i(rec:markl (sd), setm(s,MQQ), popstack(s, stack)))))))

commuting the setms with the rec:mark calls gives:
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~ seq(mkmark(s,EL),

if (terminals a),

seq[setm(s,Vi].'i),popstack(s, stack)))

seq(seira(.s,M10),

rec:markl(sd),

popstack (s, stack))))

sec[(rec:markl(sa),

if( terminal (sd),
seq(seim(s,M01), popstack (s, stack)),

s&q[setm(s, MOO), rec:markl (sd), popstack(s, s t a c k ) ) ) ) ) ) )

pulling the popstack out of the if and removing the sa and sj produces:

if(terminal(a(s)),

if( terminal(d(s)),

rec:markl(d(s)))),

seq(rec:markl (a(s)),

if( terminal(d(s)),

setm(s,MQl),

SQq(setm(s,MQO), rec:markl

popstack(s, stack))

folding gives the result:

~ seq(rec:ma,rkl(s),popstack(s, stack))

8.6. The Proof of the Peeling Theorem

In this section we sketch a proof of the following theorem.

Peeling Theorem: If x = rmark(y) for some y which does not contain any
marks, then

peel(x,HIL) ~ rec:peel(x).
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This theorem is a corollary of the following lemma:

Lemma: If s and stack satisfy certain conditions (which we leave to the reader
to express, see (Mason and Talcott, 1985) for hints) then

peel(s, stack] ~ pop:peel:stack(s, stack, rec:peel(s)).

Proof of Lemma: The lemma is proved by induction. Again we leave it as an
exercise for the reader to explicitly state the induction hypothesis (see (Mason and
Talcott, 1985) for hints). The proof consists of thirteen steps, which we leave to
the reader to annotate. Suppose that s satisfies the conditions and that sa and sj
are its old car and old cdr respectively. Furthermore let sn be its current cdr, and
sna and snd be the image of sa and Sd, respectively. Then,

peel(s, stack} ~

~ ifs(eg(MOO, m(s)),seq(3etm(s,FOO),

setd(s, stack),

peel(sd,s)),

eg(M01, m(s)), seq(sefm(.s, stack),

seta(s,Sd),
setd(s, image(sd)),

peel(sa,s)),

eq(M10, m(s)), seq(setm(s, F10),

setd(s, stack),

peel(sd,s)),

eg(Mll,m(s)),seq(.se<m(s,sa),

seta(s, image(sa)),

setd(s, image(sd)),
rplacd(s,sd),

pop:peel:stack(s, stack, sn)))
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~ if s(e5(MOO, m(s)), seq(setm(s, FOO),

setd(s, stack),

pop:peel:stack(sd, s, rec:peel(sd)))

e<7(M01, m(s)), se<i(setm(s, stack),

seta(s,Sd),

setd(s, image(sd)),

pop:peei.stack(sa,s,rec:peel(sa)))

), se<i(setm(s, F10),

setd(s, stack),

pop:peel:stack(sd, s, rec-.peel(sd)))

s,sa),

seta(s, image(sa)),

setd(s,image(sd)),

rplacd(s,Sd),

pop:peel:stack(s, stack, sn)))
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~ ifs(eg(MOO,m(s)), seq(se<m(s,FOO),

setd(s, stack),

rec:peel(sd)

setm(s, stack),

setd(s,snd),

seta(s,Sd),

peel(sa,s)),

eg(M01, m(s)), se<i(sctm(s, stack),

seta(s,Sd),
setd(s,image(sd)),

rec:peel(sa)

rplacd(s,s<i),

setm(sn,sna),

setm(s,sa),

pop:ped:stack(s, stack, sn)))

eg(M10, m(s)), seq(setm(s,¥iO),

setd(s, stack),

rec:peel(sd)

setm(s,sa),

seta(s, image(sa)),

setd(s,snd),

rplacd(s,Sd),
pop:peel:stack(s, stack, sn)),

seta(s, i

setd(s,

rplacd(s,sd),

pop:peel:stack(s, stack, «„)))
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if s(eg(MOO, m(s)), seq(se<m(s,FOO),

setd(s, stack),

rec:peel(sd)
setm(s, stack),
setd(s,snd),

seta(s,Sd),
pop:peel:stack(sa,s, rec:peel(sa))),

eq(W)'i, m(s)), seq(seim(s, stack),

seta(s,Sd),
setd(s, image(sd)),
rec:peel(sa)

rplacd(s,Sd),
setm(sn,sna),
setm(s,sa),
pop:peel:stack(s, stack, s n ) ) )

(s)), seq(seim(s,F10),
setd(s, stack),

rec:peel(sd)
setm(s,sa),
seta(s, image(sa)),
setd(s,snd),

rplacd(s,sd),
pop:peel:stack(s, stack, sn)),

(s)), seq(setm(s,sa),

seta(s, i
setd(s, i
rplacd(s,sd),
pop:peel:stack(s, stack, s n ) ) )
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~ if s(eg(MOO,m(s)), seq(se<m(s,FOO),
setd(s, stack),

rec-.peel(sd)
setm(s, stack),

setd(s,snd),
seta(s,Sd),
rec:peel(sa),

rplacd(s,Sd),
setm(sn,sna),
$etm(s,stt),
pop:peel:stack(s, stack, s n ) ) )

eg(M01,m(.s)), seq(setm(s, stack),
seta(s,Sd),
setd(s, image(sli)),
rec:peel(sa)

rplacd(s, sj),
setm(sn,sna),
setm(s,sa),
pop:peel:stack(s, stack, sn)))

(s)), seq(seim(s,F10),
setd(s, stack),

rec:peel(sd)
setm(s,sa),
seta(s,image(sa)),

setd(s,snd),
rplacd(s,sd),
pop:peel:stack(s, stack, sn)),

(s)), seq(seim(s, sa),
seta(s, i
setd(s, i

rplacd(s,Sd),
pop:peel:stack(s, stack, sn)))
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(s)), seq(rplaca(s,FOO),
rplacd(cdr(s), stack),

rec:peel(sd)
rplaca(s, stack),

rplacd(cdr(s),snd),

rplaca(cdr(s),Sd),

rec:peel(sa),

rplacd(s,Sd),
rplaca(sn,sna),

rplaca(s,sa),

pop:peel:stack(s, stack, sn)))

e5(M01, m(s)), seq(rplaca(s, stack),

rplaca(cdr(s),Sd),
rplacd(cdr(s), image(sd)),

rec:peel(sa)

rplacd(s,Sd),
rplaca(sn,sna),

rplaca(s,sa),
pop:peel:stack(s, stack, sn)))

(s)), seq(rplaca(s, F10),
rplacd(cdr(s), stack),

rec:peel(sd)

rplaca(s,sa),

rplaca(cdr(s),image(sa)),

rplacd(cdr(s),snd),

rplacd(s,Sd),
pop:peel:stack(s, stack, sn)),

(s)), seq(rplaca(s, sa),

rplaca(cdr(s), image(sa)),

rplacd(cdr(s), image(sd)),

rplacd(s,Sd),
pop:peel:stack(s, stack, sn)))
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^ ifs(e5(MOO,m(s)),seq(rpZaco(s,FOO),

rplacd(sn, stack),

rec:peel(sd)

rplaca(s, stack),

rplacd(sn,snd),

rplaca(sn,Sd),

rec:peel(sa),

rplacd(s,sd),

rplaca(sn,sna),

rplaca(s,sa),

pop:peel:stack(s, stack, sn)))

eq(KQl, m(s)), seq(rplaca(s, stack),

rplaca(sn,Sd),

rplacd(sn,snd),

rec:peel(sa)

rplacd(s,sd),

rplaca(sn,sna),

rplaca(s,sa),

pop:peel:stack(s, stack, sn)))

eq(MlO, m(s)), seq(rplaca(s, F10),

rplacd(sn, stack),

rec:peel(sd)

rplaca(s,sa),

rplaca(sn,sna),

rplacd(sn,snd),

rplacd(s,sd),

pop:peel:stack(s,stack,sn)),

eg(Mll, m(s)), seq(rplaca(s, sa),

rplaca(sn,Sna)),

rplacd(sn,snd),

rplacd(s,Sd),

pop:peel:stack(s, stack, sn)))
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~ if s(eg(MOO, m(s)), seq(rec:pee/(s<j)

rec:peel(sa),
rplaca(s,?OQ),

rplaca(s, stack),

rplaca(s,sa),

rplacd(s,Sd),

rplaca(sn,Sd),
rplaca(sn,sna),

rplacd(sn, stack),

rplacd(sn,snd),
pop:peel:stack(s, stack, sn)))

eg(M01, m(s)), seq(rec:peel(sa)

rplaca(s, stack),

rplaca(s,sa),

rplacd(s,Sd),

rplaca(sn,sd),
rplaca(sn,sna),

rplacd(sn,snd),
pop:peel:stack(s, stack, sn)))

(s)), seq(rec:peel(sd)
rplaca(s,7iO),

rplaca(s,sa),

rplacd(s,Sd),
rplaca(sn,sna),

rplacd(sn, stack),

rplacd(sn,snd),
pop :peel: stack (s, stack, sn)),

(s)), seq(rplaca(s, sa),

rplacd(s,Sd),
rplaca(sn,sna),

rplacd(sn,snd),
pop:peel:stack(s, stack, sn)))
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rec:peel(sa),
rplaca(s,sa),

rplacd(s,Sd),
rplaca(sn,sna),

rplacd(sn,snd),
pop:peel:stack(s, stack, sn)))

eg(M01, m(s)), seq(rec:yee/(s0)
rplaca(s,sa),

rplacd(s,$d),

rplaca(sn,sna),

rplacd(sn,snd),
pop:peel:stack(s, stack, sn)))

eg(M10, m(s)), seq(rec:peel(s<i)
rplaca(s,sa),

rplacd(s,Sd),
rplaca(sn,sna),

rplacd(sn,snd),
pop:peel:stack(s, stack, sn)),

eg(Mll, m(s)), seq(rp/aca(s, sa)!

rplacd(s,Sd),

rplaca(sn,sna),
rplacd(sn,snd),
pop:peel:stack(s, stack, sn)))

~ seq(if s(eg(MOO, m(s)), seq(rec:peel(sd) rec:peel(sa)),
eg(M01, m(s)), seq(rec:pee/(sa))

eg(M10, m(s)), seq(rec:peel(sd))

eg(Mll,m(s)),seq(NIL)),

rplaca(s,sa),

rplacd(s,Sd),
rplaca(sn,sna),

rplacd(sn,snd),
pop:peel:stack(s,stack,sn))
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~ seq(if s(e5(MOO, m(s)), seq(rec:peel(sd) rec:peel(sa)),

eg(M01, m(s)), rec:peel(sa)

eg(H10, m(s)), rec:peel(sd)

rplaca(s,sa),

rplacd(s,Sd),

rplaca(sn,sna),

rplacd(sn,snd),

pop:peel:stack(s, stack, sn))

~ letjnewcel -<- cdr(s)}

let{newcar-<- image(ca

newcdr -<- image(cdr(newc&l)},

oldcar -4- car(newcel),

oldcdr -e ĉ r(newcel)}

seq( if s(eg(MOO, m(s)), seq(rec:pee/(oldcdr), rec:pee/(oldcar)),

(s)), rec:yeeZ(oldcar),

(s)), rec:pee/(oldcdr),

rplaca(s, oldcar),

rplacd(s, oldcdr),

rpkca(newcel, newcar),

rplacd(iievcel, newcdr))

pop:peel:stack(s, stack, «„))

~ seq(rec:peel(s),pop:peel:stack(s, stack, sn))

~ pop:peel:stack(s, stack, rec:peel(s))

DLe



Chapter 9

Programs as Data and the Eval function

In this chapter we define the internal representation of Lisp programs as Lisp
data and produce a version of the universal function eval. Because this eval
program will be written in our external computation theory we shall have the
luxury of truthfully asserting that eval defines our internal Lisp, as is often falsely
claimed of other versions, eval plays both a theoretical and a practical role in
Lisp. Historically, the list notation for Lisp functions and eval were first devised
in order to show how easy it is to define a universal function in Lisp — the idea was
to advocate Lisp as an alternative to Turing machines for doing the elementary
theory of computability, see (McCarthy, 1963) or (McCarthy, 1960). S. R. Russell
noted that eval could serve as an interpreter for Lisp and promptly programmed it
in machine language with modifications to make it more practical. An interpreter
based on eval has remained a feature of most Lisp systems. A detailed account of
the evolution of the first interpreter can be found in (Stoyan, 1984).

The fact that Lisp programs are Lisp data is a very important feature of Lisp
for other reasons than just the existence of a universal Lisp function. The following
quote comes from (Barr and Feigenbaum, 1982).

One characteristic of LISP that is unique among high level programming
languages and that seems particularly important in AI work is the repre-
sentation of the programs themselves in the same data structure as all the
other data, namely, list structure. This simple device has proved central
to AI programs whose purpose is to manipulate other programs, some-
times themselves. For instance, a program that is to explain its line of
reasoning must examine its operation in reaching a conclusion - it must
determine what functions were called and with what values. Programs
that learn to do some task, for another example, often involve procedures
that create and modify new procedures to accomplish the task.

The idea is simply that in most programming languages the executing
program does not have access to the actual code, while any procedure in
LISP can manipulate another procedure as easily as it can other data.
For example, since the first element of a function call is the name of the
function to be called, a general purpose procedure that returns the value of
the first element of a list will, when applied to a function call like (TIMES
X Y), return the name of the function to be called, TIMES
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Another ramification of the program- as- data idea is that the LISP
programming environments tend to be extremely interactive: Since pro-
grams can be manipulated easily by other LISP programs, utilities such
as program editors and debugging facilities can be written in LISP. Thus,
they can be easily tailored by each programmer for a specific application
or even used by a program to edit or monitor another program.

The representation of programs that we shall use is entirely standard, al-
though some of the decisions regarding its semantics are be slightly non-standard.
Programs will be represented by lists of lists in what has come to be called the
Cambridge Polish notation. Actually our programs will be hereditary lists, lists
of lists with no cellular structure sharing. Recall from Chapter 4 the following
definition.

Definition: c ; u G Msexp is in M^ered if the following two conditions hold

1. (Vc0 € Cells M(c))(co ; /i 6 MK,«).

2. (V<r0,ffi)(((c ; /i)ao = (c ; u)ai A a0 ± CTI) -» (c ; n)ffa e A)

Our Lisp programs will be a subset of Mftered! there is no real reason why
we forbid them to share structure. In fact if they did share structure whenever
possible, execution time, due to the presence of self destructing macros, would be
somewhat quicker. The only motivation we can give for this decision is that in
the next chapter we shall examine a Lisp structure editor whose smooth operation
requires that data, mostly programs, does not share structure. Thus editing one
part of a program will not unexpectedlly alter another part. We begin by defining
the representation of an expression e(x) € E,

e(x),

in Mhered, by induction on the complexity of e. This definition is simply to give
the reader some familiarity with our internal representation of programs. We shall
formally define the language shortly; it will actually be explicitly richer than our
external computation theory.

Definition: e(x), the internal representation of e(x) e E, is defined to be

. (QUOTE a) if e(x) = a 6 A, (QUOTE a) is usually abbreviated to 'a,

. Xi if e(x) = xt € X,

. (COM3 e0 ei), (EQ e0 ei), (RPLACA e0 ei) or (RPLACD e0 ei) if e(e) =
«?(eo,ei) and $ = cons, eq,r placet or rplacd respectively,

. (CAR eo), (CDR e0), (INT e0), (ADD1 e0), (SUB1 e0) or (ATOM e0) if
e(e) = i?(eo) and i? = car,cdr,int,addl,subl or atom respectively,
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. (SEQ eo ei ...en) if e(cr) = seq(e0,ei,...,en),

. (f e0 ei.. . en) if e(z) = /(e0 ,ei, . . . ,en) where / € F,

. (IF eo ei 62) if e(5) = if(eo,e!,e2),

. (LET ((Y0 e 0 ) . . . (Y n en))ebody) if e(z) = Iet{y0 -t- e0, . . . ,e

Here we are using standard notation introduced in Chapter 2. Namely, sup-
pose c0 ; /ZQ € M/iat is a pure list such that

with /io(ci) = [vi , Ci+i] for z 6 n and //o(cn) = [^n , NIL]. Then we say CQ ; ^o
represents the Lisp list

(vo vi v2 . . .vn).

Thus when we say that the internal representation of

rplaca(xo , £i )

is
(RPLACA X0 Xi)

we really mean that it is the value of

cons(RPLACA, cons(Xo , cons(Xi , NIL)))

in the relevant or appropriate memory. Note that we are thus really only defining
the isomorphism type of the internal representation. We shall return to this im-
portant point when the time is ripe. Also note that we are now making use of our
assumptions, made way back in Chapter 2, concerning the set of atoms. We repeat
them here for the convenience of the not so attentive reader. We often assume
that the integers TL are contained in A. A will always be assumed to contain two
non- numeric atoms T and NIL. These atoms are used to represent true, and false,
NIL is also used to represent the empty list. We shall also assume that there are an
unlimited collection of non-numeric atoms other than the two we just mentioned.

Examples:

• The following is the internal representation of the body of the recursive: copy
program.
(IF (ATOM U)

U
(CONS (COPY (CAR U))

(COPY (CDR U)) ) )
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• The following is the way we represent a single clause in a function definition.
This example is of the defined:eg program of Chapter 3.
(DEFINED:EQ (X Y)

(IF (OR (ATOM X) (ATOM Y))
(ATOM:EQ X Y)

(LET ((OLDX (CAR X))
(OLDY (CAR Y)))

(SEQ (RPLACA X T)

(RPLACA Y NIL)
(LET ((ANSWER (ATOM:EQ (CAR X)

(CAR Y))))
(SEQ (RPLACA X OLDX)

(RPLACA Y OLDY)

ANSWER))))))

The way we are representing programs illustrates another feature of Lisp that
is in part an accidental consequence of the first implementation of Lisp. Parsing
a Lisp program is essentially trivial. The following is from (McCarthy, 1978).

One can even conjecture that LISP owes its survival specifically to the fact
that its programs are lists, which everyone, including me, has regarded as
a disadvantage. Proposed replacements for LISP, e.g., POP-2 (Burstall,
Collins, and Popplestone, 1968, 1971), abandoned this feature in favor of
an ALGOL-like syntax leaving no target language for higher level systems.

The fact that the syntax is trivial is exemplified by the manner in which we
have printed the above programs. This method is known as pretty printing, items
begining in the same column are at the same parenthetical level.

9.1. The Syntax of the Internal Programming Language

We shall now formally define the syntax and semantics of our internal Lisp.
The semantics of the language is defined via our universal function or interpreter

eval.

We shall describe it informally in the next section and then, later, give a full
external definition of it in our computation theory.

The following atoms will have special meaning in our language; they will be
the internal names of the corresponding data operations,

CAR CDR ATOM INT ADD! SUB1 EQ CONS RPLACA RPLACD.
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The next group of atoms, also being special, will be the internal representation of
certain control primitives. It is not the smallest set possible, but each primitive is
important enough to warrant special attention,

IF SEQ LET QUOTE EVAL DEFUH DEFMACRO.

There are as the reader can easily see, more control constructs than in the external
computation theory. We shall also include two mysterious functions in our lan-
guage that will be used both in this chapter and the chapter following it. They are
only mysterious in the sense that they connect our nice neat Lisp world with the
horrors and torments of the real world. We shall make certain false assumptions
about this external world when the time comes to describe their behavior. They
are, without too much undue ceremony,

READ and PRINT.

The syntax of our internal programming language is now the subject of our at-
tention. Our approach will be to define a class of S-expressions, Mprog, that are
well-formed programs.

Definition: We define Mprog to be the smallest set of memory objects closed
under isomorphism satisfying the following closure conditions.

0. If a 6 A and fj, is any memory then a ; fj. e Mprog.

1. If n is any memory and cons(READ, NIL); \i ^> v* ; n* then v* ; fj,* € Mprog. In
other words anything isomorphic to

(READ) ;

is in Mprprog-

2. If v,fj, £ Mproa andcons(PRINT,coras(v,NIL));/z > v*;n* then v*;/z* 6 Mprog.
In other words anything isomorphic to

(PRINT v) ; n*

is in "prog-

3. If a is an atom and vj ; p,... vn ; /j, € Mprog and

cons(a,cons(wi,... cons(vn,$IL)...)) ;/i > w* ;

then v* ; n* £ Mprog. In other words anything isomorphic to

(a vi ... vn) ;n*
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is in Mpr0g . The next two clauses are simple elaborations on this rule.

4. If v ; n G Mprog, 9 is any one of the following atoms CAR, CDR, ATOM, INT, ADD1,
SUB1, EVAL, and cons(6,cons(v,UIL)) ; n > v* ; n* then v* ; p* G Mprog. In
other words anything isomorphic to

(0 v) ; n*

is in

5. If vQ;fj,,vi;fJ, G Mprog,9is any oneof the following atoms EQ CONS RPLACA RPLACD
and cons(6,cons(vo,cons(vi,'KIL)));iJ, ~^>v*;n* thenv*;/z* G Mpros. In other
words anything isomorphic to

(0 v0 vi~) ;p*

is in Mpr0g.

6. Ifu;p G Maezp andcons(QUOTE,cons(u,NIL));/z > u*;/z* thenu*;^* £ Mprog.
In other words anything isomorphic to

(QUOTE u) ; //

is in Mpr0j.

7. If vo;n,vi;iJ,,V2\ii, G Mpros andcons(lF,
v* ; /i* then v* ; \i* G Mpro9- In other words anything isomorphic to

(IF

is n

8. If n G N,ui;/i, . . . ,vn;n G Mproj and cons(SEQ, con5(vi , . . . ,cons(vn,NIL) . . .));
H ~^> v* ; n* then u* ; fi* G Wlproa- In other words anything isomorphic to

(SEQ vi ... vn) ; fj,*

is in Mprog.

9. If n G N,w ; /j,»i ; fi, . . . , t> n ; /i G MPro9, ai , . . . ,an are distinct atoms,
cons(cons(ai,cons(vi,NIL)),cons(. . . con.s(an,con.s(vn,NIL)),NIL))) . . .) ^> f*;
/i* andcon5(LET, cons(v*,cons(v,HiIL)));(i* > w**;/z** then w**;/z** G Mpr0g.
In other words anything isomorphic to

(LET ((Ol «,) . . . («»»»)) »);/***

is in
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10. If n G N, v ; n 6 Mpr0g, /, ai , . . . an are distinct atoms, and

cons(DEFUN, cons(f, cons(cons(ai,... cons(an, NIL).. .) , cons(v, NIL)))) ; fi

> v* ; p*

then v* ; fi* 6 Mproff. In other words anything isomorphic to

(DEFUN / (ai ... an) u) ; n*

is in Mproj-

11. If n 6 N,u ; fi 6 Mproj) /5
a are distinct atoms, and

cons(DEFMACRO,cons(/,cons(cons(a,NIL),cons(v,NIL)))) ; fi > v* ; /**

then i>* ; /i* G yproa. In other words anything isomorphic to

(DEFMACRO / (a) v) ; ̂ *

is in Mprog.

9.2. The Semantics of the Internal Programming Language

We now describe the semantics of the constructs of this language in the order
they are introduced above. We then finish this section by pointing out where our
version of Lisp differs from more common versions such as Maclisp and Common
Lisp.

9.2.1. Atoms, Variables and Environments

In our version of Lisp we are allowing symbols to have values associated with
them. At any particular instant the set theoretical function that associates to each
symbol its value is called the current environment or current bindings. There are
three different ways to change the current environment, by using LET, DEFUN, or
DEFMACRO. If the value of an atom has not been set by one of these devices then
it is its own value. Thus initially all atoms evaluate to themselves. DEFMACRO
and DEFUN are dynamic binding operations and LET is lexical. In what follows we
shall let /?,/?o,/?i,... range over environments or bindings. The reader is invited
to think of them simply as either finite functions from

A-> V,
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or else memory objects that correspond to association lists or alists (these being
pure lists of atom value pairs). The latter alternative is in fact how we shall
implement them. Consequently we make the following definition of association
lists.

Definition: The collection of association lists, Ma/js t, is defined to be the small-
est set of memory objects closed under isomorphism and satisfying the following
conditions

1. For any memory n we have NIL ; p, e Mla/ist,

2. If a G ft, v; fj, £ Msexp, w ; p 6 Manst and cons(cons(a, v), w); fj. > v* ; fi* then
v* ; /z* 6 Maiist.

Thus an alist can be thought of as a finite function, since it is simply a list of
atom value pairs. To look up the value of an atom in an alist we use the following
standard Lisp function,

assoc(atom, alist) <—

ifn(alist,

NIL,

if (eg(atom, caar(alist)),

cor(alist),

assoc(a.tom, o/r(alist)))).

Note that since assoc returns the pair rather than the value, when the alist
does give the atom a value and NIL otherwise, we can distinguish between no value
and a value of NIL. Also note that assoc returns the first pair (working from left
to right) that it finds, so even though an atom may have several values associated
with it, the first occurrence determines the value. Both of these facts are used
heavily when manipulating association lists. In our applications we shall always
assume that

((T . T) (NIL . NIL))

is, up to isomorphism a sublist of our alists. The reason we do this has nothing to
do with the atoms T and NIL but rather with the dynamic function defining primi-
tives (the fact that the alists are non-empty allows us the pleasure of destructively
adding to them). We shall say more about this at the appropriate time.

Our program eval takes two arguments; the first is supposed to be an element
of Mpr0g while the second is supposed to be an alist, in other words a member of
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Maiiat. Thus our convention concerning atoms can be restated more formally by
saying:

/(a,/?) ;/i> { ^""^u^> l assoc(a,p) ,n , v, [i v^ ,
[a; n otherwise.

9.2.2. The READ and PRINT forms

We shall regard the READ form as the internal name for a new zero-ary memory
operation, read. In real life it reads an S-expression from the terminal or file. In our
Lisp we shall only assume that on each evaluation it produces a new S-expression
in Mpr0g. Explicitly, if n is a memory then for some fj,* extending n we have that

read() ; y. >• v* ; fj,*

v* ; fj,* e Mprog and that Cells^(v*) R 6^ = 0. Similarly we regard PRINT as the
internal name of a new unary memory operation print. In real life, evaluation of
(PRINT a) will result in the evaluation of v and the printing of the resulting value
to the terminal. The value of the (PRINT v) form in Maclisp is T. For our purpose
it is sufficient to assume that print is the constant function,

print (v) ; fj, > T ; /i.

We shall delve a little more into the nature of these operations in a subsequent
section. The reader may have noticed in the description of the PRINT form, that
evaluation of

(PRINT v) ; fj.

in the appropriate current environment ft does not correspond to the external
evaluation of

prmt(u) ; ft,

but rather the external evaluation of

print(eval(v, /?)) ; \i.

9.2.3. Function Application

This bring us appropriately to the discussion of the interpretation of function
application and the internal form of definitions in our internal Lisp. Let us fix a
system of function definitions

I

/o(*o) *~ eo

fn(xn) <- en
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for the purpose of discussion. Since our interpreter should be capable of knowing
about such things, we define the internal form of this definition, denoted by D, to
be any element of Ma(i«t isomorphic to

((fo (xo) e 0 ) . . . ( fn (xn) en)).

We then allow the internal representation of this definition to be part of the current
environment. Thus the value of the function symbol, fo, in an environment /? is
the list consisting of:

1. The list of its internal arguments, in traditional jargon its argument list,

(X0 ... Xs)

and

2. The internal form of its definition body.

We can now explain the evaluation of

(fo v0 vi ... vs~) \n

in an environment, ft, which includes the internal form of the above definition.
This is done by explaining the behavior of

eval((fo v0 vi ... «,),/?) ;/i

which is defined to be

cons(cons (Xi

cons (cons (XB) eval(vs,/3)), /3)}

eval(f,z).

This can easily be explained in words: To evaluate

(fo VQ vi ... va)

in a particular environment we first look up the internal form of the function body
in that environment, then evaluate the arguments from left to right, again in that
environment, and finally evaluate the internal form of the body of f o in the new
environment where the atoms in the, initial, argument list are now bound to these
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calculated values (the rest of the environment remains the same). The reason
we mentioned that the argument list is the original one is due to our inclusion
of making dynamic function definitions. We shall return to this point when we
discuss DEFUN. We should also remark that if the body of a function definition has
free variables other than those in its argument list, then those variables will have
dynamic rather than lexical scope.

Memory operation application is treated in exactly the same way, except for
the fact that we do not look up the value of the operation in the environment.
Rather it has been fixed from the outset. Thus the evaluation of

(CAR vo) ;(J.

in an environment ft, eva/((CAR VQ") •, fl) ', H, is simply car(eval(vo,/3)) ; fj,.

9.2.4. The QUOTE Form

In all cases, however, one thing should be clear. A function always evaluates
its arguments, treating them as elements of Mprog. For this reason it is convenient
to have a simple form which will evaluate to an arbitrary memory object. For
otherwise it would be impossible to have atomic constants. This is the job of the
QUOTE form. (QUOTE v) evaluates to the piece of data v in the relevant memory.
In symbols,

eval( (QUOTE v),/3) ; fj, > v ; /J..

Note that QUOTE is not a function because it does not evaluate its arguments. It
is thus really a control construct rather than an operation. It is traditional to
abbreviate

(QUOTE v)

to 'v, for ease of reading.

9.2.5. The IF, SEQ and LET Forms

The interpretation of
if, seq, let,

should be no surprise, so we spend very little time on them.

eva/((IF w0 «i vy),/}) ; fj, ~ if(eval(v0,/3),eval(vi,/3),eval(v2,/3)) ; fj,

eua/((SEQ vl . . . un),/8) ; ft ~ seq(eva/(u0,/3), • • • ,eval(vn,/3)) ; n-

Finally
(LET ((a0 v0) ... (an
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will be strongly isomorphic to

let{z+ cons(cons(&o,eval(vo,/3)),
cons (cons (a* ,e.val(v\ , /?))

cons(cons(&n, eval(vn,/3)), /?)}

eval(v,z).

Note that the binding variables in the binding expression of the let are not eval-
uated. Only the expressions they are to be bound to are evaluated. Also note
that we are using the binding enviroments rather than substitution as a means of
binding the variables. It has the same effect, is simpler to implement and extend,
and it is more efficient to boot.

9.2.6. The EVAL, DEFUN and DEFMACRO Forms

We are now left with the task of explaining

EVAL DEFUN and DEFMACRO.

EVAL simply evaluates its single argument twice in the current environment. Thus
for the form

(EVAL u) ; n

to denote in environment ft we must have

and v* ; fj,* 6 Mprog. It is thus a way of treating data as programs. Note that
(EVAL (QUOTE v) ; fj, will evaluate to the same thing as v ; /z. Explicitly

eval( (EVAL w) , /?) ; n ~ eval(eval(v, /?), /?) ; p.

Both DEFUN and DEFMACRO are, as we have already said, dynamic function or
macro definition forms. They allow us to add, dynamically, function and macro
definitions to the current environment. Neither evaluates its arguments. Their
behavior can be described in the following way. Suppose that alist is a current
environment and pair is a pair, whose car is f and whose cdr is val. Then the
function destructively:add:bnds(pzir,a.'List) does the following. If f is given a
value in alist then the result of the function call is the alist alist with the value
of f destructively altered so that it is now val. If f is not given a value in alist
then the result of the function call is

nconc(alist, coras(pair, NIL)).
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Note that because we are assuming our alists are non-empty, the value of this
function call is the modified alist. The result of evaluating

(DEFUN / (ai ... O t>) ; n

in the current environment, /3, is the same as evaluating

sec±(destructively:add:bnds((f (ai . . . a n ) v),/?),/) ; /z.

Similarly the result of evaluating

(DEFMACRQ / (a) v) ; n

in the current environment, /3, is the same as evaluating

s&q(destructively:add:bnds((.f MACRO (a) u),/?),/) ; p.

Finally we must describe the difference between a macro definition and a normal
function definition, since DEFUN makes a function definition and DEFMACRO makes
a macro definition. We have already described the interpretation of function ap-
plication so it suffices to describe the evaluation of a macro call. Suppose that ft
is the current environment and assoc(f, ft); fj, is

(/ MACRO (a) u) ; \i.

Then evaluating
(f «i... vn) ; (i

is the same as evaluating (EVAL v) ; // in the environment that binds a to
(f «!.. .«„);//. In other words we evaluate the body of the macro definition
with its argument bound to the whole macro call. This evaluation should pro-
duce another program which is then evaluated. Thus a macro definition is a way
dynamically extending the interpreter. The following example illustrates this by
defining the internal form of the control primitive if n. It is an example of a self
destructing macro; it destructively alters the macro call to the defining form.

(DEFMACRO IFN (X)
(LET ((THEN:CLAUSE (CADDR X))

(SEQ (RPLACA X IF)
(RPLACA (CDDR X) (CADDDR X))
(RPLACA (CDDDR X) THEN:CLAUSE))))

Another, equally valid, example is the macro definition of the dynamic variable
binding construct SETQ.

(DEFMACRO SETQ (X)
(LET ((VAR (CADR X))

(VAL (EVAL (CADDR X))))
(CONS DEFUN (CONS VAR VAL))))

Thus the syntax of the SETQ form is

(SETQ var veil).

It dynamically binds the unevaluated variable var to the result of evaluating val.
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9.2.7. Where Our Lisp is Different

Our Lisp is different from standard versions of Lisp, such as Maclisp and
Common Lisp, in many respects. We shall be satisfied with pointing out some of
the most obvious differences.

Firstly, in most standard Lisps, atoms other than numbers and the booleans
T and NIL, have no initial value. A variable binding operation must first be per-
formed to give them one. Secondly the values of certain atoms are fixed. For
example if we evaluated the following form in Maclisp

(LET ((T NIL)) T)

we would, rather than obtain the value NIL, receive the following error message,
telling us that truth is eternal.

;(SETQ (T)) VERITAS AETERNA - DON'T SETQ T

As an aside we have noticed the following bug in Maclisp, when one evaluates
(LET ((NIL T)) NIL)

the answer NIL is returned, whereas if one evaluates
(SETQ NIL T)

one obtains the appropriate error message:
;(SETQ (NIL)) NIHIL EX NIHIL - DON'T SETQ NIL

Another difference is that we are storing the definition of a function in the
value cell of the function. In Maclisp it is stored on the property list of the atom.
It makes little difference, since we can still modify the definition of any function
accessible to us. The following is a delightful example of this ability, taken from
(McCarthy and Talcott, 1980). The following three forms, when evaluated in
order, produce a clever version of the Fibonacci function.

(SETQ LST (CONS 1 (CONS 1 NIL)))
(DEFUN FIBON (N)

(IF (OR (EQ N 0) (EQ N 1))
1
(FIBONLOOP N LST)))

(DEFUN FIBONLOOP (N L)
(IFN (CDDR L)

(IF (EQ N 2)
(CADR (RPLACD (CDR L)

(CONS (PLUS (CAR L)
(CADR L))

NIL)))
(FIBONLOOP (SUB1 N)

(RPLACD (CDR L)
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(CONS (PLUS (CAR L)
(CADR L))

NIL))))

(IF (EQ N 2)

(CADDR L)
(FIBONLQOP (SUB1 N) (CDR L)))))

If we now calculate (FIBON 5) we receive the answer 8. Not only that but
now the definition of FIBQN is

(FIBON (N)
(IF (OR (EQ N 0) (EQ N 1))

1
(FIBONLOOP N '(1 1 2 3 5 8)))).

Thus FIBON, or at least its auxiliary program FIBONLOOP, destructively alters
the second argument LSI so that it stores any previously computed value. The
nth element of LSI corresponds to the value of (FIBON n) . For example, after
calculating (FIBON 10) the cell LSI will then represent the pure list

(1 1 2 3 5 8 13 21 34 55 89).

Although this example is trivial it illustrates elegantly the reason why Lisp is the
language for artificial intelligence. Note that FIBON has the free variable LST that
is not in its argument list. This variable is scoped dynamically.

9.3. The Definition of eval

We now give a formal definition of our Lisp interpreter, eval. We also use it as
an opportunity to illustrate some points in programming style. The first definition
is of the main program eval. It is a very simply structured program that branches
on the nature of the form it is evaluating. Note that it does almost no work itself,
but rather decides what work needs to be done and then ships off the arguments
to a function specialized for the job. It is thus a good example of obeying the
ninth commandment of Lisp programming, (Friedman and Felleisen, 1986):

The Ninth Commandment Use help functions to abstract from representa-
tions.

Elsewhere in this work we have referred to these help functions as abstract
syntax. There are at least two cosmetic uses for functions:

• To abstract away from representations.

• To emphasize the structure of control.
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Note that once the appropriate specialist function has been chosen, it is usu-
ally unnecessary to remember the form type, and only the body of the form need
be passed to the chosen function. It is only in the QUOTE and EVAL forms that the
job of evaluating is so simple that no specialist function is needed.

eval(fm, bnds) <—

if(aiom(fm),

letjval -<- a«3oc(fm,bnds)}

if (val, crfr(val), fm),

let{f-f-car-(fm)}

if s(eq(f, SEQ), se3:et;aJ(&o<fo/(fm),bnds),

eg(f,LET), 2ei:et;a/(6o<fj/(fm),bnds),

z/:evo?(6o(i2/(fm),bnds),

defun:eval(body(fm),bnds),

defmacro:eval(body(fm),bnds),

cadr(fm),

eval(eval(body(fm), bnds), bnds)

memop:eval(f, body (fm), bnds),

apply(fm,f, body (fm), bnds)))

eg(f,DEFUN),

eg(f,DEFMACRO),

eg(f, QUOTE),

eg(f,EVAL),

memop(f),

9.3.1. The seq:eval Program

The first specialized function is seq:eval, which is passed a non-empty list of
forms and the current environment. It must then evaluate each element of the list
and return the value of the last element. This is easily done by recursion.

seq:eval(fnt,bnds) <—

if(cdr(fm),

seq{eval(car(fm),'bTids},seq:eval(cdr(fm),bnds)),

eval(car(fm), bnds))
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9.3.2. The let:eval Program

The function that evaluates a let form, let:eval, is just as simple, but requires
the help of the auxiliary function add:binds. The function let:eval simply evaluates
the let body in the environment that is obtained by calling addibnds with the
binding expression of the let and the current environment as arguments. Recall
that the internal form of the binding expression is a list of lists, each sublist
consisting of two elements, the first being the variable and the second being the
expression whose value the variable should be bound to. The function add:bnds
then produces a new environment in which the appropriate alist of variable value
pairs has been appended on to the front. Thus these new values will over-ride any
old values while the let body is being evaluated.

let:eval(fm, bnds) «—

eval(cadr(fm), add :bnds (car (fm), bnds))

add-.bnds (list, bnds) *-

if(list,

coras(co7w(caar(list), eval(cadar (list), bnds))

bnds)

9.3.3. The if-.eval Program

The function which evaluates the body of an IF, if:eval, is as simple as one
could possibly want. It simply evaluates the test or predicate form and then
evaluates the branch, returning it as the value.

i/:eva/(fm,bnds) <—

if(eva/(car(fm),bnds), eva/(ca<ir(fm),bnds), eval(caddr(fm),bnds))
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9.3.4. The defun-.eval and defmacro:eval Programs

The dynamic function defining mechanisms are equally simple; they leave
most of the work to an auxiliary function, destructively:addibnds. In both cases
they return the name of the function, or macro, being defined after they have
destructively added its definition to the current environment.

The function destructively:add:bnds expects two arguments, the first being a
pair while the second is a non-empty alist. What it does is quite simple; if the alist
gives a value to the first element of the pair, then it simply destructively alters
this value to be the second element of the pair, then returning the so modified
alist. If, however, the alist does not give the first element of the pair a value, it
then simply destructively adds this pair onto the end of the alist, in a way that
makes sure that the result is also an alist. It is in this process that the initial alist
must be non-empty for the function to make sense.

defun:eval(fm, bnds) <—

seq(destructively:add:bnds(fm,bnds), cor(fm))

defmacro:eval(fm,'bnds) <—

se<±(destructively:add:bnds(rplacd(fm, cons (MACRO, «£r(fm))),bnds),

ca7"(fm))

destructively: add: bnds (pair, bnds) <—

let{f x- cor(pair), val -<- c<fr(pair)}

let{old:bnd -*- assoc(f, bnds)}

if(old:bnd,

rplacd(old:bnd, val),

), cons (pair, NIL))
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9.3.5. The memop:eval Program

The function memop-.eval does the job of applying the memory operations,
while the task of deciding whether a form was a memory operation call was that
of the function memop. Both definitions are without subtlety.

memop:eval(f ,args,bnds) <—

ifs(eg(f,READ), readQ,

eq(f, ATOM), oiom(eva/(cor(args), bnds)),

eg(f.CAR), car(ei;<iZ(car-(args),bnds)),

eg(f,CDR), c<Zr(evaZ(car(args),bnds)),

eq(f, INT), m<(et>a/(cor(args),bnds)),

eg(f,SUBl), SM&i (ewZ(car-(args),bnds)),

eq(f, ADD1), addl (e/ya/(car(args),bnds)),

eq(f,PRINT), print(eval(car(a.rgs),bnds)),

eg(f,EQ), eg(et>a/(car-(args),bnds), evo/(ca<ir(args),bnds)),

eg(f,CONS), cons(eva/(car(args),bnds), e

e5(f,RPLACA),rpioca(e?;o/(car-(args),bnds),

eva/(carfri(args), bnds)),

e9(f,RPLACD),rp/ac<i(ew/(car(args),bnds),

eval(cadr (args), bnds)))

memop (f) <—

or(es(f,ATOM),eg(f,EQ), eg(f,CAR),

eg(f,CDR), e?(f,INT), e5(f,ADDl),

eg(f,SUBl),eg(f,PRINT), eg(f,READ),

eq(f, CONS),e3(f, RPLACA),eg(f, RPLACD))
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9.3.6. The macro-.eval and fun:eval Programs

Finally we are left with the task of interpreting function and macro calls. This
is done by a series of functions, apply determines whether or not the call is to a
macro or a function. It then ships the call off to specialist functions, macro-.eval
in the case of a macro call, and fun:eval in the case of a function call. The actual
task of determining whether the call is to a macro or not is the task of the macro
function. We simply give the definition of these functions, and leave the the task
of annotation to the reader.

apply(fm, f, args, bnds) <—

if (macro (f,bnds), macro: eval (fm, bnds), fun:eval(f, args, bnds))

macro:eval(fm, bnds) <—

let{d^ assoc(car(fm),b-n.ds)}

eval(eval(car(cdddr(d)), cons(cons(caddr(d),fm),buds)),buds)

fun:eval(f, args,bnds) <—

let{d-<- assoc(f ,bnds)}

eval(caddr(d), add:bnds(bnds:mk(cadr(d), args),bnds))

macro (f, bnds) <— eq(cadr(assoc(f, bnds)), MACRO)

body(fm) <— coV(fm)

bnds:mk(vaxs,a.rgs) <—

if(vars,

cons(list(car(va.rs), car(args)),

bnds:mk(cdr(veLrs),

NIL)
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9.4. The Read-Eval-Print Loop

In this section we give a brief description of the toplevel of Lisp, the so called
read-eval-prini loop. Our simplified version of the toplevel consists of the three
functions read,eval and print that read evaluate and print S-expressions. Thus
when one are talking to Lisp the system is in a loop that consists of three programs

1. read reads what is typed and converts it into the corresponding internal
list structure representation,

2. eval then evaluates the internal form in the current environment,

and

3. print then prints the result back to the terminal (or file, etc).

A real Lisp system does many other things too, such as storage management,
error handling, provisions for editing function definitions, etc. However we shall
be content with a very simple version:

K,p() <-

let{bnds -*- cons(cons(T,T:), cons (cons (THIL, NIL),NIL))}

read: eval:print: loop (bnds)

Here the auxiliary function read:eval:print:loop is exactly what it sounds like,
namely

read:eval:print:loop(bnds) <—

seq(pn«<(et>a/(rea<f(),bnds))

read: eval:print: loop (bnds))

The read program's job is to get from the input stream the next string of char-
acters or tokens corresponding to the external representation of the S-expression.
It then constructs the corresponding internal structure. Rather than deal with
the issue of representing and manipulating character strings, our read and print
programs are assumed to satisfy reasonable approximations, at least in respect to
their observable behavior. A more detailed approach can be found in (McCarthy
and Talcott, 1980, 1985).
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9.5. Correctness of the eval Program

We finish off this chapter by pointing out the partial correctness of our inter-
preter. The actual proof is left to the reader as it is not difficult.

Theorem: Suppose that e(x) is an expression with respect to a definition
D, v ; p € M3exp with |x| = n = \v\. Suppose further that D ; fj, is an internal
representation of D and suppose finally that v* ; fi is isomorphic to

Then
Devat,D h eval(v*,V) ; n ~ e(v) ; /i.

Note that we are not proving anything concerning the control constructs that
are in the internal language, but not in the external one. This is not to say that
we could not, just that we do not.
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Editing Data Efficiently

In this chapter we shall describe and prove properties of an interactive Lisp
editor. The editor and the treatment are based on the editor in (McCarthy and
Talcott, 1980), which in turn is based on the Maclisp editor. The following is from
(McCarthy and Talcott, 1980).

An important part of any LISP system is an interactive editor. With the
help of the editor you can write and modify programs. Some editors allow
you to evaluate expressions without leaving the editing environment. They
may also provide facilities for editing S-expressions other than programs.
The fact that LISP programs are S-expressions with a very simple syntax
means that is easy to write a simple but powerful LISP program editor in
LISP.

This is the subject of this chapter. Before we begin describing the actual
code for the editor, it is perhaps appropriate if we discuss what is desirable in such
an entity. Suppose that we wished to edit an S-expression s. The most obvious
question that should first be answered is : What does it mean to edit s? This
is easily answered when one thinks of the case when s is a program. Editing a
program is to a large extent synonomous with debugging it. Thus we would like
to be able to change items, add items, delete items and make structural changes.
This immediately entails that we should be able to move around within s. This is
done by maintaining a pointer to some location in the structure. The thing pointed
to is called the current S-expression and the variable pointing to it is called cs.
The editor should then have commands that allow us to change this pointer, in
other words to move around the S-expression. Moving around essentially boils
down to two different operations; the first is when we wish to delve deeper within
the current expression and the second is when we wish to step back and perhaps
edit some other portion of s that is not a substructure of the present current
expression. For this purpose it is desirable to keep track of our path down to cs
so that we can at any stage backtrack and then follow another path. This is done
by what we call the chain. The editor would not be much help if it did not allow
one to look at the current expression and so we should be able to print it (to the
terminal). Nor would it be useful if it did not allow us to exit it once we have
finished editing; for this reason we include a quit command.
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As we have already said we should be able to insert and delete elements of
the current expression. Indeed this is all we need to be able to convert any non-
atomic program into any other non-atomic program. But of course an editor that
only had the above commands would hardly deserve the title of user friendly.
Consequently we include other features which are useful in the course of editing
a program. As we have already said, a principal application of the editor is to
debug programs. Debugging is often a trial and error exercise, and so for this
reason we allow calling the Lisp interpreter from within. An important feature
of the editor is that many of the commands are destructive. In fact one might
consider it to be an essential feature. For if we did not edit destructively, each
alteration to s would require us to copy, with the necessary modifications, the
entire structure. This of course would produce an editor that tried the patience
of its most patient users. Furthermore since the point of editing a structure is to
change it, avoiding destructive operations seems counter intuitive. Nevertheless
the destructive operations are all safe in the sense that for any command there is
an inverse command, one that will undo the previous one. We shall not actually
implement an undo command, but its existence or possibility will be the subject
of our attention.

Since our programs are elements of Mhered, we have designed our editor to
operate on such objects. It will actually work for all S-expressions but sometimes
with unexpected and surprising results. One other important difference between
our version of the editor and the one found in (McCarthy and Talcott, 1980) other
than style, is that we do absolutely no error checking. Commands given to our
editor are assumed to make sense. This is mainly because we are concerned with
the behavior of the operations and not that of the operator (who is assumed to
be infallible). We list the commands here, giving an extremely brief description of
them. We shall give much more detailed descriptions when we actually come to
define them and their consequences.

10.1. Commands

The commands that we shall implement and study in our interactive Lisp
editor are:

• ok, exit the editor.

• print, print the current expression.

• n, where n is any integer. This alters the pointer cs so that it points to the
nth element of the current cs.

• up, move the cs pointer to its previous value in the path down, the sublist of
s which contains cs as an element. We call this objects the parent of cs.
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• left, assuming that cs points to an element of a list, this command moves
the cs pointer so that it points to the element to the left, in this parent list,
of its current value.

. right, same as for left except that it move cs to the right.

. Ipi, move the left parenthesis of cs in. This splices the first element of cs
into its parent in the position cs occupies.

• rpi, move the right parenthesis of cs in. This splices the last element of cs
into the next position in the parent.

• Ipo, move the left parenthesis of cs out. This splices the element before cs
in the parent onto the front of cs.

« rpo, move the right parenthesis of cs out. This splices the element to the
right in the parent onto the end of cs.

. (d n), delete the nth element from cs, numbering them from 1 to the length
of the cs.

• (i x n) insert x into the nth position in cs, again numbering them from 1
to the length of cs.

• Any other S-expression will be evaluated by Lisp interpreter in the current
environment.

We shall describe the commands in more detail when it comes time to give
their definitions.

10.2. The Code for the Editor

In this section we shall give the actual definition of the editor. It will be within
the internal programming language that we introduced in the previous chapter.
However for ease of reading we no longer insist on everything being in CAPITALS.
The principal program in the definition of the editor is called

editloop.

It is similar to the read-eval-print loop, in that within the loop it reads a command,
executes it and then calls itself again. In the case of read:evai.print:loop the only
argument passed between calls to itself was the current environment. In the case
of the editor it is the state, state. The state consists of a pure list that stores
three objects. The first is the S-expression being edited, the second is the current
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chain

Figure 18. The Nature of state

expression and the third is the chain. Thus the variable state will point to an
object of the form depicted in figure 18.

As usual we shall use abstract syntax to hide the actual details of this repre-
sentation. Thus we have the following, self-explanatory, definitions.

(defun set:s (state val) (seq (rplaca state val) state))
(defun set:cs (state val) (seq (rplaca (cdr state) val) state))
(defun set:chain (state val)

(seq (rplaca (cddr state) val) state))
(defun get:s (state) (car state))
(defun get:cs (state) (cadr state))
(defun get:chain (state) (caddr state)).

The variable chain, as we have already said, stores the path down to the
current expression. Explicitly chain is a pure list (actually it is an alist), which
is non-empty when the values of s and cs are different and NIL otherwise. Note
that s and cs being different correspond to the situation when we have already
descended into s. When chain is non-empty its first element is a pair (n . e).
Here e is the expression, or piece of data, which immediately contains the current
expression cs, and n is the position of cs in the list e. The second element, if there
is one, is again a pair. The second element of the pair is the father or parent of e
and the first element of the pair corresponds to the position of e within its parent.
This continues in the obvious fashion until we reach the top, s. The abstract
syntax for chains simply consists of the following three programs.
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(defun position (chain) (caar chain))
(defun parent (chain) (cdar chain))
(defun set:position (chain n) (rplaca (car chain) n)).

We make the convention that the car of a list is the first element, and in general
the nth element of the list x is computed by the following program.

(defun element (x n)
(if (and (> n 1) (cdr x))

(element (cdr x) (sub! n))
(car x ) ) ) .

To invoke the editor on an object within the read-eval-print-loop of Lisp one
simply calls the function editor on something which evaluates to that object.
Thus to edit the definition of a function f it suffices to evaluate (editor f ) , since
the value of f in our Lisp is its definition. The state is initialized so that both
s and cs correspond to the value of f, and the chain is of course NIL. This is
reflected in the following definition.

(defun editor (s)
(if (atom s) 'no-edit (editloop (list s s NIL) ) ) ) .

The editloop is then given by the following definition. It first prints a prompt,
in this case >, to the terminal to inform the operator that it is waiting for a
command. It then reads in the command, obtains the relevant information from
the state and then acts upon the command. Note that if the command is ok the
editloop does not call itself but simply returns, the possibly modified, s. If the
command is not the quit command then the editloop calls a specialized function
to execute the command. Each of these specialized functions returns the resulting
state. This explains why the if s part of the program is within the recursive
editloop call. Thus we are utilizing the fact that internal Lisp programs evaluate
their arguments. Note that just in the case of the eval program there are some
commands which are so simple to execute that no specialized program is required.
In this case executing either a print statement, and exit statement, or a call to the
Lisp interpreter requires no specialized function.
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(defun editloop (state)
(seq (print '>)

(let ((cmd (read))
(s (get:s state))
(cs (get:cs state))
(chain (get:chain state)))

(if (eq cmd 'ok)
s
(editloop
(ifs (eq cmd 'print) (seq (print cs) state)

(int cmd)
(edit:down cmd s cs chain state)
(eq cmd 'up) (up s cs chain state)
(eq cmd 'left) (left s cs chain state)
(eq cmd 'right) (right s cs chain state)
(eq cmd 'Ipi) (Ipi s cs chain state)
(eq cmd 'Ipo) (Ipo s cs chain state)
(eq cmd 'rpi) (rpi s cs chain state)
(eq cmd 'rpo) (rpo s cs chain state)
(and (not (atom cmd)) (eq (car cmd) 'i))
(i (cadr cmd)

(caddr cmd)
s
cs
chain
state)

(and (not (atom cmd)) (eq (car cmd) 'd))
(d (cadr cmd) s cs chain state)
T (seq (print (eval cmd))

state))))))).

10.2.1. Coherent States

We now begin describing the specialized editing programs, the commands that
they execute as well as the definition of a legal command. We begin by defining
the notion of a coherent state, since the notion of a legal command requires it.

Definition: Suppose that state £ Msexp is a pure list of length 3, it is said
to be a coherent state if the following hold. Letting s ~ ^ei:s(state), cs ~
get:cs(sta.te) and chain ~ get:chain(sta.te),

1. chain <= M&n,t,
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2. s = cs iff chain = NIL,

and now supposing that chain ^ NIL we also have

3. e/ement(parenf(chain),posztzon(chain)) 21 cs,

4. parent(last( chain)) ~ s,

5. (Vci,c2 6 Spine(chain))

) ~ 02) — > element(parent(c2),position(c2)) cz

6. (Vc € Spine (chain))pareni(c) e

The idea of a coherent state is quite simple. It is a state reached from the
initial one, (s s NIL), via a sequence of legal commands. In fact this is the
principal loop invariant that we shall prove later. Namely

Theorem: Executing a legal command takes coherent states to coherent states.

In the following descriptions we shall assume that state is a coherent state
and that s, cs and chain are its respective components.

10.2.2. The Integer Commands

The first type of command that we shall consider is the integer command. If
n is a positive integer and cs is a list of length greater than or equal to n, then n
is a legal command. The specialized program that executes it is editdown. What
editdown does is to produce a new state of the form

(s (element cs n) (cons (n . cs) chain).

In other words the state is changed so that the new current expression is the nth
element of cs and the chain is modified by adding the pair (n . cs) to the front
of the original one. The actual definition of editdown is

(defun edit:down (n s cs chain state)
(seq (set:cs state (element cs n))

(set:chain state (cons (cons n cs) chain)))).

The process can be pictured as follows, supposing that prior to execution of
the n command the situation is as depicted in figure 19, then after execution the
situation is depicted in figure 20.
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state

= cn

r ... rn^-**...

I

chain = ((mi . e i ) . . . ( m x • e^))

Figure 19. Prior to Execution on n

state

chain = ((n . GI> (mi

Figure 20. After Execution

10.2.3. The Up Command

The next command is the up command, which is legal as long as the chain
is not NIL. The up command is the inverse of a legal integer command. After
executing the up command the new current expression is the parent of the old
current expression, and the new chain is the old chain with the first element
removed. The actual definition is the following.
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(defun up (s cs chain state)
(seq (set:cs state (parent chain))

(set:chain state (cdr chain)))).

10.2.4. The Move Right Command

The move right command, right, is legal as long as cs is not the rightmost,
or last element, of pareni(chain). Explicitly, we require that

length(parent(ch.&in)) > posziion(chain).

The result of executing the right command is that the state is altered so that the
new current expression is the next element of parent (chain) after the appropriate
occurrence of the old cs. The chain must also be modified so that the first element
of the first pair is one larger than previously. The command is executed by the
following definition.

(defun right (s cs chain state)
(let ((n (add! (position chain))))

(seq (set:cs state (element (parent chain) n))
(set:position chain n)
state))).

10.2.5. The Move Left Command

The move left command, left, is the inverse of the move right command.
It is legal as long as cs is not the first element of porenf(chain). Explicitly, we
require that

position(chain) ^ 1.

The result of executing the left command is that the state is altered so that the
new current expression is the element of parent (chain) prior to the appropriate
occurrence of the old cs. The chain must also be modified so that the first element
of the first pair is one smaller than previously. The command is executed by the
following definition.

(defun left (s cs chain state)
(let ((n (subl (position chain))))

(seq (set:cs state (element (parent chain) n))
(set:position chain n)
state))).
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10.2.6. The Move the Left Parenthesis In Command

The move the left parenthesis in command, Ipi, is legal as long as neither
cs is atomic nor chain in NIL. What it does is to splice the first element of cs
into the parent of cs, at the position previously occupied by cs. The cdr of cs
is then moved to the next position to the right of the new element in the parent.
Thus the parent will become a list, one element longer than it was originally. The
new cs is the cdr of the old. To help with visualizing this operation suppose that
the situation is as pictured in figure 21, then the situation after executing the Ipi
command is depicted in figure 22.

,parenf(chain)

Figure 21. Prior to Ipi

Notice that no new cells are created in performing this modification. The
actual definition of the operation is as follows; it utilizes an auxiliary program
called spine which simply returns the nth element of the spine (numbering them
from 1 to the length of the argument, which is supposed to be a list).
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^pareni(chain)

NIL

I

Figure 22. After Ipi

(defun Ipi (s cs chain state)
(let ((pos (spine (parent chain) (position chain))))
(seq (rplaca pos (car cs))

(rplaca cs (cdr cs))
(rplacd cs (cdr pos))
(rplacd pos cs)
(set:position chain (addl (position chain)))
(set:cs state (car cs)))))

(defun spine (x n)
(if (and (> n 1) (cdr x))

(spine (cdr x) (subl n))
x)).

10.2.7. The Move the Left Parenthesis Out Command

The move the left parenthesis out command, Ipo, is the inverse of the Ipi
command. It is legal as long as the chain is not NIL, the cs is a (possibly empty)
list and cs is not the first element of its parent. Execution of a legal Ipo command
does the following; it physically removes the element prior to cs in the parent, from
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pareni(chain)

r - tpr1

I
Vl V,

Figure 23. Prior to Ipo

^parenf(chain)

cs

... CQr*»

r-- [jSr-

Figure 24. After Ipo

the parent, and adds it to the front of cs. Again we can illustrate this operation for
clarity. Suppose that the situation is as pictured in figure 23, then after executing
Ipo the situation is as depicted in figure 24.

Note that the parent of cs is shortened by one and that no new cells are
created. The actual definition is the following.
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(defun Ipo (s cs chain state)
(let ((n (subl (position chain))))
(let ((pos (spine (parent chain) n)))
(let ((posl (cdr pos)))
(seq (rplacd pos (cdr posl))

(rplacd posl cs)
(rplaca posl (car pos))
(rplaca pos posl)
(set:position chain n)
(set:cs state posl)))))).

10.2.8. The Move the Right Parenthesis In Command

The move the right parenthesis in, rpi, is legal as long as chain is not NIL
and cs is not atomic. It is similar to the Ipi command except that it splices the
last element of cs into the position after cs in the parent. The definition is then,
using the auxiliary program chop:

(defun rpi (s cs chain state)
(let ((pos (spine (parent chain) (position chain))))
(ifn (cdr cs)

(seq (rplaca pos NIL)
(rplacd cs (cdr pos))
(rplacd pos cs)
(set:cs state NIL))

(let ((last (chop cs)))
(seq (rplacd last (cdr pos))

(rplacd pos last)
state))))).

The auxiliary program chop destructively removes the last element of the
spine of the list, returning the deleted cell:

(defun chop (x) (chp x (cdr x)))
(defun chp (x y)
(ifn (cdr y) (seq (rplacd x NIL) y) (chp y (cdr y)))).
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10.2.9. The Move the Right Parenthesis Out Command

The move the right parenthesis out command, rpi, is the inverse of the rpi
command. It is legal as long as chain is not NIL, cs is a list and is not the last
element of its parent. The definition is thus:

(defun rpo (s cs chain state)
(let ((pos (spine (parent chain) (position chain))))

(let ((posl (cdr pos)))
(seq (rplacd pos (cdr posl))

(rplacd posl NIL)
(ifn cs

(seq (rplaca pos posl)
(set:cs state posl))

(set:cs state (nconc cs pos l ) ) ) ) ) ) ) .

10.2.10. The Delete Command

The delete command, (d n), deletes the nth element from cs. It is thus only
legal when there is an nth element. Thus cs should not be atomic and n should
be less than or equal to the length of cs. The definition is stated simply as:

(defun d (n s cs chain state)
(if (eq n 1)

(let ((pos (cdr cs)))
(ifn chain

(set:s (set:cs state pos) pos)
(seq (rplaca (spine (parent chain) (position chain))

pos)
(set:cs state pos))))

(seq (rplacd (spine cs (subl n)) (cdr (spine cs n)))
state))).

Actually there is a subtle point here: it is impossible to remove the very first
cell in s and still have s point to the modified result. For this reason we shall also
make (d 1) illegal when cs = s.
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10.2.11. The Insert Command

The insert command, (i n x), inserts x into the nth position in cs. If there is
already an element occupying the nth position it is, of course, moved to the right.
The command is legal as long as cs is not atomic, x does not share any cells with
s, and n is less than or equal to one plus the length of cs. In other words one can
insert x into cs or add it to the end.

(defun i (n x s cs chain state)
(let ((tmp (cons x (spine cs n ) ) ) )

(if (eq n 1)
(ifn chain

(set:s (set:cs state tmp) tmp)
(seq (rplaca (spine (parent chain) (position chain))

tmp)
(set:cs state tmp)))

(seq (rplacd (spine cs (subl n)) tmp)
state)))).

Just as in the case of the delete command we also make (i 1 x) illegal when
cs = s.

10.2.12. Legal Commands

We finish off this section by summarizing the definition of a legal command.
Suppose that state is a coherent state and that s,cs and chain are its respective
components. Then we can define when a command cmd is legal with respect to
this state as follows.

Definition: The command cmd is legal iff

1. cmd = n, cs is not atomic and length(cs) > n.

2. cmd = up and chain is not NIL.

3. cmd = left, chain is not NIL and posjiion(chain) ^ 1.

4. cmd = right, chain is not NIL and length(parent(cti.a.in)") > posziz'on(chain).

5. cmd = Ipi, cs is not atomic and chain is not NIL.

6. cmd = Ipo, cs is a list, chain is not NIL and poszizon(chain) ^ 1.

7. cmd = rpi, cs is not atomic and chain is not NIL.
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8. and = rpo, cs is a list, chain is not NIL and

posztzon(chain) < length(parent(chs.in).

9. cmd = (d n), length(cs) > n and if s = cs then n ̂  1.

10. cmd = (i n x), cs is not atomic, x does not share any cells with s, n <
1 + length(cs) and if s = cs then n ̂  1.

10.3. A Sample Editing Session

In this section we give a simple example of the use of the editor, based on a
lecture given by Carolyn Talcott. Suppose that while within the read-eval-print
loop we make the following definition, of a program similar to spine. In fact
we want the program to perform exactly the same task as spine, although it is
written in a more Maclisp-ish dialect.

(DEFUN NTHT (U N)
(COND ((GREATER? N 1) (NTHTAIL (CDR U) (SUB! N)))

(T U) ))

However it soon becomes apparent that our definition of ntht is defective in
two ways. The most obvious is that we have misspelt ntht in the recursive call.
The second mistake is that we do not check to make sure that U is not the empty
list before we take its cdr. The correct definition should then be:

(DEFUN NTHT (U N)
(COND ((AND (GREATERP N 1) (NOT (NULL (CDR U))))

(NTHT (CDR U) (SUB1 N)))

(T U) )).

Realizing our mistake we wish to correct the program, using the interactive
Lisp editor. This is done by calling the program editor on the atom ntht. The
first thing we shall correct is the misspelt recursive call. Consequently we descend
into the code.

(editor ntht)
> 2

Rather than do anything hasty we print the current expression and decide
what to do next.

> print
(COND ((GREATER? N 1)

(NTHTAIL (CDR U) (SUB1 N)))

(T U))
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The next step is to descend further into the structure, namely to the second
element of the current expression.

> 2

Again we print the current expression,
> print
((GREATER? N 1) (HTHTAIL (CDR U) (SUB1 N)))

The misspelt call is in the second element of the current expression and so
again we descend and print.

> 2
> print
(NTHTAIL (CDR U) (SUB1 N))

We can now make the correction. This is done in two steps. The first is to
delete the misspelt word.

> (d 1)

The second is to insert the correct version, and print the result to make sure
we have done what we intended.

> (i 1 ntht)
> print
(NTHT (CDR U) (SUB1 N))

We now wish to correct the logical error. That is, we want to change the
(GREATER? M 1) test to the correct version, namely (AND (GREATER? N 1) (NOT
(NULL (CDR U)) ) ) . The first thing to do is to ascend.

> up
> print
((GREATER? N 1) (NTHT (CDR U) (SUB1 N)))

We can now insert the second conjunction. This is done in two steps. We first
insert a list containing this clause into the second position, and then move the left
parenthesis of this inserted clause out.

> (i 2 ((not (null (cdr u) ) ) ) )
> print
((GREATER? N 1) ((NOT (NULL (CDR U)))) (NTHT (CDR U) (SUB1 N)))
> 2
> print
((NOT (NULL (CDR U))))
> Ipo
> print
((GREATER? N 1) (NOT (NULL (CDR U))))

All we need do now is to insert the and and we have repaired the program.
> (i 1 and)
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> print
(AND (GREATER? N 1) (NOT (NULL (CDR U))))
> up
> print
((AND (GREATER? N 1) (NOT (NULL (CDR U))))
(NTHT (CDR U) (SUB1 N)))

However while we are still in the editor it seems wise to examine the program
to make sure we have not overlooked anything.

> up
> print
(COND ((AND (GREATER? N 1) (NOT (NULL (CDR U))))

(NTHT (CDR U) (SUB1 N)))
(T U))

> up
> print
((U N)
(COND ((AND (GREATER? N 1) (NOT (NULL (CDR U))))

(NTHT (CDR U) (SUB1 N)))
(T U)))

Everything appears in order so we exit the editor.
> ok
((U N)
(COND ((AND (GREATER? N 1) (NOT (NULL (CDR U))))

(NTHT (CDR U) (SUB! N)))
(T U)))

We can give an idea of what goes on while we are editing. The structure of
the state initially is represented in the following picture:

s =
((U N)

(COND ((GREATER? N 1)
(NTHTAIL (CDR U) (SUB1 N)))
(T U)))

cs = s
chain = NIL.

After descending into the structure using the following three integer com-
mands

2 2 1

the state becomes
cs = (GREATER? N 1)
chain =
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((1 (GREATERP N 1) (NTHTAIL (CDR U) (SUB1 N) ) )
(2 COND ((GREATER? ..) (NTHTAIL . .)) (T U))
(2 ( U N ) ...) ) .

If we then execute the move right command,

rt,

the state is transformed into
cs = (NTHTAIL (CDR U) (SUB1 N))
chain =
((2 (GREATERP N 1) (NTHTAIL (CDR U) (SUB1 N)))
(2 COND ((GREATERP ..) (NTHTAIL ..)) (T U))
(2 (U N) ...)

10.4. Proving Properties of the Editor

In this section we prove several properties of the editor. We begin by divid-
ing the commands into two separate groups, the atomic commands, and the list
commands. The atomic commands are those which are actually atoms. Namely

up n left right Ipi Ipo rpi rpo.

The list commands are those which are actually lists,

(d n) (i n x) .

Notice we are ignoring the print and ok commands. The reason for this is quite
simple. There is nothing interesting, other than the obvious, to prove about them.
The first result that we shall prove other than the coherent state theorem (that
executing a legal command takes coherent states to coherent states) demonstrates
that each command has an inverse. We first formulate the result for the case of
the atomic commands.

Definition: Suppose that state is a coherent state, s, cs and chain are its
respective components, and cmd is an atomic command other than n or up, then
we define cmd"1 as follows,

left if cmd = right,
right if cmd = left,

cmd"1 = Ipi if cmd = Ipo,
Ipo if cmd = Ipi,
rpi if cmd = rpo,
rpo if cmd = rpi.
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Using this definition we can state the theorem as:

The Atomic Command Inverse Theorem: Suppose that state is a coher-
ent state, s, cs and chain are its respective components, and and is a legal atomic
command other than n or up, and cmd is the external form of its definition. Then

state ~

seq(cmd(s, cs, chain, state),
cm d~1(get:s(sta.te),get:cs(sta.te),get:chain(sta.te), state)).

Remark: In the case of the n and up commands the situation is not quite as
simple. We only get strong isomorphism in one direction. Explicitly

The Integer Command Inverse Theorem: Suppose that state is a coher-
ent state, s, cs and chain are its respective components, and n is a legal atomic
command. Then

state ~

sen(edit:down(n., s, cs, chain, state),
up(get:s(sta.te), get:cs(sta.te), yei:c/zam(state), state)).

Whereas when position(cha.in) = n, we only have that

state S

seq(up(s, cs, chain, state),

edit:down(n,get:s(sta.te),get:cs(stSLte),get:chain(st3.te), state)).

Exercise: Explain why, supposing that state is a coherent state, s, cs and
chain are its respective components, and up is a legal atomic command and that
position(cha.iii) = n, we do not have that

state ~

seq(up(s, cs, chain, state),

edit:down(n.,get:s(sta.te),get:cs(sta.te),get:chain(sta.te), state)).

A similar situation holds in the case of the list commands. Namely
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The List Command Inverse Theorem: Suppose that state is a coherent
state, s, cs and chain are its respective components, and (i n x) is a legal list
command. Then

state ~

seq(i(n, x, s, cs, chain, state),

d(n, <7e<:s(state), <?et:cs(state), get:chain(sta.te), state)).

Whereas when eJeraent(chain, n) = x, we only have that

state =

seq(c/(n, s, cs, chain, state),

i(n, x, gei:.s(state), get:cs(sta.te), get:chain(sta.te), state)).

The coherent state theorem is then stated in the following fashion. We split
it into several cases for ease of reading.

The Atomic Command Coherent State Theorem: Suppose that state
is a coherent state, s, cs and chain are its respective components, and cmd is a
legal atomic command other than n,and cmd is the external form of its definition.
Then

cmd(s, cs, chain, state)

is also a coherent state.

The Integer Command Coherent State Theorem: Suppose that state is
a coherent state, s, cs and chain are its respective components, and n is a legal
command. Then

edit:down(n, s, cs, chain, state)

is also a coherent state.

The List Command Coherent State Theorem: Suppose that state is a
coherent state, s, cs and chain are its respective components.

1. If (d n) is a legal command then

rf(n, s, cs, chain, state)

is also a coherent state.

2. If (i n x) is a legal command then

z(n, x, s, cs, chain, state)

is also a coherent state.

We leave the proofs of the coherent state theorems to the reader and concen-
trate on the inverse theorems.
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10.4.1. Proof of the Inverse Theorems

Rather than prove every equation we content ourselves with proving a small
but representative sample, namely the following three lemmas.

Lemma 1: Suppose that state is a coherent state, s, cs and chain are its
respective components, and n is a legal atomic command. Then

state ~

seq(edit:down(n, s, cs, chain, state),

up(get:s(sta.te), get:cs(sta.te),get:chain(sta.te), state))

Proof of lemma 1: Assume the hypotheses of the lemma. Then

seq(edit:down(n, s, cs, chain, state),

up(grei:.s(state), get:cs(sta.te), get:c/mm(state), state))

~ seq(sei:cs(state, element (cs, n)),

set:chain(sta.te, cons(cons(u, cs), chain)),

up(get:s(sta.te),get:cs(sta.te),get:chain(sta.'te): state)),

by unfolding and simplifying the edit:down call.

~ let{cell -<- cons(cons(n, cs), chain)},

seq(sei:cs(state, element(cs, n)),

sei:c/iam(state, cell),

up(s, element(cs, n), cell, state)),

by introducing a let and evaluating the arguments to the up call.

~ let{cell -<- cons(cons(n, cs), chain)},

seq(set:cs(state, element(cs, n)),

set:chain( state, cell),

set:cs(state,parent(cell)),

set :chain(sta.te, cdr(cell))),

by unfolding and simplifying the up call.

~ let{cell -<- cons(cons(n, cs), chain)},

seq(se<:cs(state, element(cs, n)),

set:chain( state, cell),

sei:cs(state, cs),

se£:c/iazn(state, chain))),
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by evaluating the components of cell.

~ let{cell -<- cons(cons(n, cs), chain)},

seq(se£ :cs(state, element(cs, n)),

se<:cs(state, cs),

set:chain(sta.te, cell),

set:chain(sta.te, chain))),

by commuting the set operations.

~ let{cell -*- cons(cons(n, cs),chain)},

seq(se£:c.s(state, cs),

sei:cftain(state, chain))),

by cancelling redundant sets.

c± seq(set:cs(state,cs),

set :chain(sta.te, chain))),

by eliminating a redundant let.

~ state.

MLemma 1

Lemma 2: Suppose that state is a coherent state, s, cs and chain are its
respective components, and left is a legal atomic command. Then

state ~

seq(/e/<(s, cs, chain, state),

right(get:s(sta.t&),get:cs(sta.te),get:chain(sta.te), state))

Proof of lemma 2: Assume the hypotheses of the lemma. Then

seq(/e/£(s, cs, chain, state),

right(get:s(sta.te),get:cs(sta.te),get:chain(sta.te), state))

~ seq(let{n-f-posiiz'on(chain)}

seq(set:cs(state, e/emenf(parent(chain), suftl(n))),

set:position(dia.in, su61(n)),

state),

right(get:s(sta.t&),get:cs(sta.te),get:chain(sta.te), state)),

by unfolding the call to left.
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let{n-*-p0.si<zon(chain)}

seq(sei:c5(state, e/ement(pareni(ch.ain), 5w61(n))),

sei:posz<zon(chain, su61(n)),

state,

right(s, e/ement(pareni(chain), su&l(n)), chain, state)),

by simplifying the arguments to the right call.

let{n-<-posih'on(chain)}

seq(sef :cs(state, element(parent(ch.a.in), suW(n))),

sei:posiizon(chain, su61(n)),

state,

let{m -<- addl(positim(ch&in))}

seq(sei:cs(state, element(parent(ch&irL), m)),

set:position(cha.in, m),

state)),

by unfolding and simplifying the call to right,

renaming the lexical variable to avoid clashes.

seq(set:c.s(state, e/ement(parent(chain),

let{m-<-n}

seq(sei:cs( state, e/ement(pareni(chain), m)),

sei:po5ztion(chain, m),

state)),

by simplifying the binding expression of the inner let.

let{n-«-posiizon(chain)}

seq(se<:cs(state, eZemeni(parent(chain),

set:position(ch.a.in, su61(n)),

se<:cs(state, cs),

sei:poszh'on(chain, n)

state)),

by eliminating the let and collapsing nested seqs.
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seq(sei:cs(state, e/emen£(pareni(chain),

set:cs(state, cs),

set:position(ch3iiiL, su6l(n)),

set:posit ion(chain, n),

state)),

by commuting various sets.

seq(se;t:c.s(state, cs),

sei:posziJon(chain, n),

state)),

by eliminating redundant sets.

~ seq(sei:C5(state, cs),

set:position(cha.in,position(cha.in)),

state)),

by eliminating the let.

~ state,

finally eliminating the redundant sets.

dLemma 2

Lemma 3: Suppose that state is a coherent state, s, cs and chain are its
respective components, and n is a legal atomic command. Then

state ~

seq(/po(s, cs, chain, state),

(pz'(<7et:.s(state),<7e;S:c.s(state),<7ei:c/mm(state), state)).

Proof of lemma 3: Assume the hypothesis of the lemma. Then

seq(/po(s, cs, chain, state),

/pz'(<7e£:.s(state), <7etf:c,s(state), get :cftam(state), state))
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~ seq(let{n -<- subl(posMon(cha.in.))}

let{pos -<- spme(paren<(chain),n)}

let{posl -<- cdr(pos)}

seq(rp/ac<i(pos, cc?r(posl)),

rp/acd(posl,cs),

rp/aca(posl, car(pos)),

rp/aca(pos, posl),

set:position(cha.i-a., n),

set:cs(state,posl)),

lpi(get:s(sta.te), get:cs(sta.te), get:chain(sta.te), state)),

by unfolding the Ipo call.

~ seq(let{n-<- subl(position(clo.a.i'n.))}

let{pos -<- spme(pareni(chain), n)}

let {posl -<- cdr(pos)}

seq(rp/ac<£(pos, cdr(posl)),

rp/ac<f(posl,cs),

rp/aca(posl, car(pos)),

rp/aca(pos,posl),

set:position(cha.in, n),

set:cs(sta.te, posl)),

lpi(s, get:cs(sta.te), chain, state)),

by simplifying the arguments to the Ipi call.

~ let{n-<- su6l(po5iizon(chain))}

let{pos -<- 5pme(paren<(chain),n)}

let{posl -<- cdr(pos)}

seq(rp/acd(pos, cdr(posl)),

rp/acd(posl,cs),

rp/aca(posl, car(pos)),

rp?aca(pos,posl),

set:position(cha.in., n),

sei:cs(state, posl),

lpi(s,posl, chain, state)),

by pulling the let out and further simplifying the arguments to the Ipi call.
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let{pos -<- spme(pareni(chain),n)}

let{posl -<- cdr(pos)}

seq(rp/acc?(pos, cdr(posl)),

rpZacc?(posl,cs),

rp/aca(posl, car(pos)),

rp/aca(pos,posl),

set:poszfzon(chain, n),

set:cs(state, posl),

let{npos -<- spine(parent(cha.iTi),position(chs.in))}

seq(rp/aca(npos, car(posl)),

rp/aca(posl,cdr(posl)),

rp/acc?(posl, cdr(pos)),

rp/acd(npos, posl),

set:position(cha.iTi, a<fdl(poszti

set:cs(state, car(posl)))),

by unfolding the Ipi call and renaming variables to avoid clashes.

let{pos -tr «pine(pareni(chain),n)}

let {posl -<- cdr(pos)}

seq(rp/acd(pos, cdr(posl)),

rplacd(posl, cs),

rp/aca(posl, car(pos)),

rp/aca(pos,posl),

set:posHion(ch.3iin, n),

sei:c5(state, posl),

letjnpos -«- spme(parenf(chain),n)}

seq(rp/aca(npos, car(posl)),

rp/aca(posl, cs),

rp/ac<f(posl,cdr(pos)),

rplacd(npo s , po s 1 ) ,

set:position(ch.a.in, arfrfl(n)),

fiei:cs(state, cs)))),

by simplifying the binding expression of the inner let.



Proving Properties of the Editor 267

let{pos -<- spme(pareni(chain),n)}

letjposl •«- cdr(pos)}

seq(rp/acd(pos,cc?r(posl)),

rp/acc?(posl,cs),

rp/aca(posl,car(pos)),

rp/aca(pos,posl),

set:position(cb.a.in, n),

set:cs(state,posl),

let{npos -<-pos}

seq(rp?aca(npos, car(posl)),

rp/aca(posl,cs),

rplacd(posl, cdr(pos)),

rplacd(npos, posl),

se<:posz<z'on(chain, addl(n)),

sei:c5(state, cs)))),

again by simplifying the binding expression of the innermost let.

let{pos-<-spme(pareni(chain),n)}

let{posl -<- cdr(pos)}

seq(rp/acd(pos, cdr(posl)),

rp/ace?(posl,cs),

rp/aca(posl, car(pos)),

rpJaca(pos,posl),

set:position(cha.in, n),

sei:cs(state,posl),

rp/aca(pos, car(posl)),

rp/aca(posl,cs),

rplacd(posl, cdr(pos)),

rp/ac«i(pos,posl),

set:position(cha.iiL,

set:cs(st&te, cs)))),
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finally eliminating the innermost let.

~ let{n -<- subl(position(ch&in))}
let{pos -<- spine(parent (chain), n)}

letfposl -<- cdr(pos)}

seq(rp/acd(pos, cdr(posl)),

rp/acd(posl,cs),

rp/aca(po s 1 , car (po s ) ) ,

rp/aca(pos,posl),

rp/aca(pos, car(posl)),

rp/aca(posl,cs),

rplacd(posl, cdr(pos)),

rplacd(pos, posl),

set:position(chzi'n., n),

5e<:cs(state,posl),

set:position(ch.a.in, addl(n)),

set :c3(state, cs)))),

by commuting various sets.

let{pos •+ spine(parent( chain), n)}

let{posi -*- ccfr(pos)}

seq(rp/acd(pos, cdr(posl)),

rp/acd(posl, cs),

rp/aca(posl, car(pos)),

rp/aca(pos,car(posl)),

rp/aca(posl,cs),

rp/acd(posl, cdr(pos)),

rp/acd(pos,posl),

, n),

set:cs(state, posl),

sei:cs(state, cs)))),

again by commuting sets.
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let{pos -<- spine(parent(chain), n)}
let{posl x- cdr(pos)}

seq(rp/acd(pos, crfr(posl)),
rplacd(posl,cs),
rplaca(posl, car(pos)),

rp/aca(pos, car(pos)),
rp/aca(posl,cs),
rplacd(posl, cdr(pos)),
rplacd(pos,posl),
set:position(ch.a.in, addl(n)),
6e<:c5(state, cs)))),

cancelling the redundant sets and making use of the fact that

at the second rplaca car(posl)=car(pos).

let{n x- subl(position(cha.in)}}
let{pos -<- spine(pareni(chain), n)}

let{posl -<- cdr(pos)}
seq(rp/ac<f(pos,cdr(posl)),

rp/acd(posl,cs),
rp/aca(posl, car(pos)),
rp/aca(posl,cs),
rp/aca(pos, car(pos)),
rp/ac<f(posl, cdr(pos)),
rp/acd(pos,posl),
set:position(ch&in, addl(n)),
sei:c5(state,cs)))),

by eliminating redundant operations and commuting others.
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~ let{n-<- subl(position(cha.in))}

let{pos -<- spine(parent( chain), n)}

letjposl x-cdr(pos)}

seq(rp/ac<f(pos, cdr(posl)),

rplacd(posl,cs),

rplacd(posl, cdr(pos)),

rp/aca(posl,cs),

rp/acd(pos,posl),

set :po5ih'on(chain, addl(n)),

set:cs(sta.te, cs)))),

again by cancellation.

~ let{n-<-su61(po5z<zon(chain))}

let{pos -<- spme(paren<(chain),n)}

let{posl -<- cdr(pos)}

seq(rp/acd(pos, cc?r(posl)),

rp/acc?(posl, cdr(pos)),

rp/aca(posl,cs),

rplacd(pos, posl),

$et:position(ch&i'n., addl(i\.)),

set:cs(sta.te, cs)))),

the same again, once more.

let{pos -<- 5pme(paren<(chain), n)}

let {posl -<- cdr(pos)}

seq(rp/acd(pos, cdr(posl)),

rplacd(posl, cdr(posl)),

rp/aca(posl,cs),

rp/acd(pos,posl),

set:posUion(cha.i'D., addl(n)),

set:cs(sta.t&, cs)))),

by using the fact that at the second rplacd the cdr of pos is also the cdr of posl.
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letjpos -«- spme(parent(chain),n)}

let{posl -+ cdr(pos)}

seq[rplacd(pos, cdr(posl)),

rp/aca(posl,cs),

se<:cs(state, cs)))),

by eliminating the redundant alteration to the cdr of posl.

letjpos -<- spine(pareni( chain), n)}

let {posl -<- cdr(pos)}

seq(rp/acd(pos, ccfr(posl)),

rp/acc?(pos,posl),

rp/aca(posl,cs),

sei:positzon(chain, addl(

set:cs(state, cs)))),

by commuting operations.

let{n-<-su61(posz'i«on(chain))}

let{pos -<- spme(pareni(chain),n)}

let {posl -«- ctfr(pos)}

seq(rp/acd(pos, posl),

rpZaca(posl,cs),

set:cs(state, cs)))),

by eliminating redundant operations.

let{pos -«

let {posl -<- cdr(pos)}

seq(rp/aca(posl, cs),

sei:cs(state, cs)))),

eliminating the first rplacd, since cefr(pos)=posl.
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~ let{n -<- SM&l(position(chain))}
let{pos -<- spme(parent(chain), n)}

let{posl -«- cdr(pos)}

seq(.set:po,sitzon(chain, addl(n)),

5et:cs(state, cs)))),

eliminating useless lets.

~ let{n-«-su6l(posziion(cha.in))}
seq(set:positzon(chain, cuWl(n)),

sei:cs(state, cs)))),

again by eliminating a let.

~ seq(3ef:po5ifzon(chain, addl(subl(position(cha.iii)))) ,
sei:c5(state, cs)),

using a simple arithmetic fact.

, cs))))

~ state.

QLemma 3.



Chapter 11

Conclusions

This work has provided a precise but elegant framework for reasoning about
programs which destructively manipulate their data. In the foundational respect
it is entirely new. It is an implicit aim of this work to show that the verification,
specification and transformation of programs are not, and should not be, distinct
enterprises. Thus we view our work as a contribution, however small, to inferential
programming as described in (Scherlis and Scott, 1983).

The work itself is relatively complete insofar as it achieves its initial aims. It
only raises a small number of important or interesting unanswered questions, other
than those in the tentative chapter on program transformations. It is, however, a
mere stepping stone in the whole scheme of things, and we finish by summarizing
our results and then pointing out two areas of research that would follow on
naturally from this body of work.

11.1. Summary

This work presents a framework for reasoning about, and proving properties
of, programs which destructively alter their underlying data. Unlike its rivals the
theory neatly separates control from data and provides a foundation for verifi-
cation, derivation and transformation. In this book we have tried to emphasize
the interplay between these areas. Indeed we believe that the old paradigm, see
(Burstall, 1974),

Verification = Hand Simulation + Induction,

should be replaced by one which is closer to the aims and spirit of inferential
programming. Namely

Verification = Transformation + Induction.

One of the implicit aims of this work was to justify this paradigm. A virtue of this
paradigm is that it emphasizes the role of transformation rather than the low-level
hand simulation approach. Transformations developed and studied in the process
of verification are equally applicable in the more productive process of derivation.
The style is also more amenable to automation than the hand simulation variety.
The dominance of the hand simulation school is largely a consequence of their
preoccupation with extensional relations. To retain a transformational approach
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in the transition from purely applicative languages to those with side effects one
must also make the transition from extensional to intensional equivalence relations.
Thus we claim that the limitations of the hand simulation school rests upon their
mistaken emphasis on extensionality.

The explicit aim of this work was to develop a theory just as elegant as that
which exists for pure Lisp. The most important principle in pure Lisp is Leibniz's
Law; equal expressions can be replaced by equal expressions to obtain an equal
expression:

Leibniz's Law

e0(x) = a(x) -»• e(x,e0(x)) = e(x,d(x)).

This principle has the consequence that correctness proofs in pure Lisp are
very much of the transformation plus induction variety. The content of Leibniz's
Law is that it lays the foundation for a calculus of program transformations; any
program that is obtained from another by replacing a portion by another Lisp
equal one is guaranteed to have all the extensional properties the original had. It
also allows equational verification and derivation. The underlying semantics can
be pushed somewhat into the background, serving merely as a justification for the
transformations and induction principles involved.

One of the problems in developing a theory for destructive Lisp is the failure
of Leibniz's Law. This is because evaluating the same expression twice will more
often than not give different results. Thus simple syntactic manipulations, on the
face of it, seem prohibited in the destructive case. This does much to explain why
the vast majority of verification proofs of destructive programs in the literature
are of the hand simulation variety. Thus a first step in justifying our paradigm is
to recover Leibniz's Law in some form. This was done by making the transition
from extensional relations to intensional ones.

To define the semantics we introduced the notion of a memory structure. The
equivalence relations were then defined within this model theoretic framework.
A distinction was made between intensional relations and extensional relations.
The former class turned out to have a much more manageable theory than the
latter. The principal intensional relation studied was strong isomorphism, ~. Its
properties allow for elegant verification proofs in a style similar to that of pure
Lisp, and very much of the transformation plus induction variety.

Substitution Theorem: If e°body(x,y) =* el
body(x,y), \x\ = k + 1 and ej(y) ~

ej(y), for 0 < i < k then
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This provided a wealth of syntactic manipulations that preserve strong iso-
morphism, and we spent some time enumerating them in Chapter 3. Some of the
more important control properties are:

Sequencing : seq0<i<jfe(e?(y)) ~ seq0<i<fc(e|(y))-

Composition : d(eg(y),. . . , ej^y)) ~ tf(ej(y),..., cj.^y)).

Branching : if(e°(y),e?(y),e°(y)) ~ if(ej(y),el(y),4(y)).

Unfolding : c(x) K eM(x).

These properties give a foundation for a calculus of program transformations;
any program that is obtained from another by replacing a portion by another
strongly isomorphic one is guaranteed to be strongly isomorphic to the original
one:

Leibniz's Law: Supposing e,-(x),e(x,y) are expressions, i G 2, then,

e0(x) ~ ei(x) -> e(z,e0(z)) ~ e(x,ei(z)).

A plethora of verification proofs of both simple and complex programs was
given using the intensional equivalence relation. All of these proofs were of the
transformation plus induction variety. In contrast, we gave some verification proofs
of programs, using the extensional relations. Because the Substitution Theorem
fails for these extensional relations, the proofs were necessarily of the hand simu-
lation variety.

In a more theoretical light, we also proved that the equivalence relations
introduced here are decidable, and used them to study the expressive powers of
certain fragments of Lisp.

11.2. Richer Languages

The area of research that we are most immediately interested in to follow up
on this work is that of incorporating high level constructs into our language, and
enlarging the framework accordingly. Three examples are:

1. Closures, allowing functions or functionals to be passed as arguments and
returned as values. We have recently done some work in this area that suggests
this is not such a difficult extension.

2. Continuations, allowing for non-functional control constructs such as Note
(Talcott, 1985a) that make continuations, i.e. the remaining part of the com-
putation, first class objects. There is good reason to believe that this will be
somewhat more difficult than the previous problem.
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3. Concurrency, allowing for concurrent evaluation by introducing primitives like
QLAMBDA, QLET (Gabriel and McCarthy, 1984) and, in the spirit of actors,
(Hewitt, 1977) SEND (Mason, Talcott and Weyhrauch, 1984).

It is our belief that the most fruitful approach that can be taken in these
examples is the study of the equivalence of programs, to prove that programs
with these high level constructs are equivalent to programs without them. The
simple programs play the role of specifications and the proofs of equivalence the
role either as verifications or derivations of the more complex programs. Oper-
ations or transformations on programs from one language to another are central
to the whole approach. Operations on programs need meanings to transform and
meanings to preserve, (Talcott, 1985b, 1986), and the study of various notions
of equivalence is simply a study of the various meanings. This variety of lan-
guages and interpretations should exist within a single framework. They should
be compatible in the sense that the value returned by a program should be the
same in each interpretation. They should also be coherent in that one can move
gracefully between interpretations and have systematic methods for deriving one
interpretation from another. The fact the target languages and specification lan-
guages are supersets or subsets of one another permits special interpretation of
fragments (Talcott, 1986). This approach emphasizes the role of transformation,
the new paradigm; in the long term it is a contribution to inferential programming,
seen as the unification of programming, program verification, program derivation
and program transformation.

11.3. Foundations for the Analogy

In this work we have tried to show that verification and derivation should be
thought of as duals. We have concentrated on verification only because it is much
simpler than derivation. In Chapter 7 we scratched the surface of the problem
of program derivation. There is much more to be done here. In (Scherlis and
Scott, 1983) the authors suggest the following analogy between programming and
mathematics:

Mathematics Programming

problem ... specification
theorem ... program
proof ... program derivation

Thus it remains to develop a firm foundation for these analogies. This is a
large scale project and we are not too embarrassed by our modest initial contri-
butions. As they say in (Scherlis and Scott, 1983):
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We. shall not arrive at inferential programming overnight, however, be-
cause the very act of producing a complete derivation requires a program-
mer to express some of his previously unexpressed intuitions.
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